Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho mình xin đề bài với cho hỏi tại sao có
\(\left(a-b\right)^2\left(17a^2+10ab+9b^2\right)\ge0\)
để suy ra \(\sqrt{2a\left(a+b\right)^3}\le\frac{5}{2}a^2+\frac{3}{2}b^2\)
#Thắng: hình như là Ireland MO 2000 hay 2002 j đó , nãy vừa thấy trên fb <(")
a) Ta có: \(A=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\left(\sqrt{9}-\sqrt{4}\right)\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)
\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)(Vì \(\sqrt{5}>\sqrt{3}\))
\(=5-3-\sqrt{5}\)
\(=2-\sqrt{5}\)
b) Ta có: \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)
\(=\left(\frac{\sqrt{3}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}+\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{2}}+\sqrt{6}\right)\)
\(=\sqrt{3}+\sqrt{3}+\sqrt{6}\)
\(=2\sqrt{3}+\sqrt{6}\)
c) Ta có: \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}}+\sqrt{3}\right):\sqrt{3}\)
\(=2\sqrt{3}+\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{\frac{1}{3}:3}-\sqrt{\frac{4}{3}:3}+\sqrt{3:3}\)
\(=2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\frac{1}{9}}-\sqrt{\frac{4}{9}}+\sqrt{1}\)
\(=2\sqrt{3}+\left|2-\sqrt{3}\right|+\frac{1}{3}-\frac{2}{3}+1\)
\(=2\sqrt{3}+2-\sqrt{3}+\frac{2}{3}\)(Vì \(2>\sqrt{3}\))
\(=\sqrt{3}+\frac{8}{3}\)
d) Ta có: \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)
\(=\left(\frac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\right)\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)
\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\frac{60}{20}\cdot\left|2-\sqrt{3}\right|\)
\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))
\(=6-3\sqrt{3}\)
a,\(\sqrt{4\left(a-5\right)^2}=\sqrt{4}.\sqrt{\left(a-5\right)^2}=2.\left|a-5\right|=2\left(a-5\right)\left(a\ge5\right)\)
b,\(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3=-1}\)
c,Mạn phép sửa đề ,nếu ko thì kết quả ko đẹp
\(\sqrt{8+2\sqrt{15}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{5}=\sqrt{5}+\sqrt{3}-\sqrt{5}=\sqrt{3}\)
d,\(\sqrt{\left(3-2\sqrt{3}\right)^2}-\sqrt{\left(3+2\sqrt{3}\right)^2}=2\sqrt{3}-3-3-2\sqrt{3}=-6\)
e,\(\sqrt{24\left(b-3\right)}^2=\sqrt{24^2}.\sqrt{\left(b-3\right)^2}=24.\left(3-b\right)\left(b< 3\right)\)
\(\frac{A}{\sqrt{2}}=\frac{1+\sqrt{7}}{2+\sqrt{8+2\sqrt{7}}}+\frac{1-\sqrt{7}}{2-\sqrt{8-2\sqrt{7}}}\)
\(=\frac{1+\sqrt{7}}{2+1+\sqrt{7}}+\frac{1-\sqrt{7}}{2-\sqrt{7}+1}\)
\(=\frac{1+\sqrt{7}}{3+\sqrt{7}}+\frac{1-\sqrt{7}}{3-\sqrt{7}}\)
=\(\frac{\left(1+\sqrt{7}\right)\left(3-\sqrt{7}\right)+\left(1-\sqrt{7}\right)\left(3+\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)
\(=\frac{-8}{2}=-4\)
\(\Rightarrow A=-4\sqrt{2}\)
ta có \(A=\frac{3+\sqrt{5}}{4+\sqrt{2\left(3+\sqrt{5}\right)}}=\frac{3+\sqrt{5}}{4+\sqrt{6+2\sqrt{5}}}=\frac{3+\sqrt{5}}{4+\sqrt{\left(\sqrt{5}+1\right)^2}}=\frac{\left(3+\sqrt{5}\right)}{5+\sqrt{5}}\)\(=\frac{\left(5-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{20}=\frac{5+\sqrt{5}}{10}\)
tương tự \(B=\frac{3-\sqrt{5}}{4-\sqrt{2\left(3-\sqrt{5}\right)}}=\frac{5-\sqrt{5}}{10}\)
\(\Rightarrow A-B=\frac{\sqrt{5}}{5},A+B=1;AB=\frac{1}{5}\)
vậy \(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)=\left(A+B\right)\left[\left(A+B\right)^2-AB\right]=\frac{\sqrt{5}}{5}\left(1-\frac{1}{5}\right)\cdot\frac{4}{5}=\frac{4\sqrt{5}}{25}\)