K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

Ta có: \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\)

\(\Rightarrow A>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)

\(\Rightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(\Rightarrow A>\frac{1}{2}-\frac{1}{11}=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)

- Đến đây bn lấy \(\frac{9}{22}\) so sánh vs \(\frac{65}{132}\) là ra ĐPCM nhé :3

6 tháng 5 2017

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{10.10}\)

\(\Rightarrow A>\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(A>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(A>1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)

\(A>1+0+0+0+...+0-\frac{1}{10}\)

\(A>1-\frac{1}{10}=\frac{9}{10}\)

\(\Rightarrow A>\frac{5}{10}=\frac{1}{2}\)

mà \(\frac{1}{2}=\frac{66}{132}>\frac{65}{132}\)

\(\Rightarrow A>\frac{65}{132}\)

Vậy \(A>\frac{65}{132}\)

6 tháng 5 2017

Ta có : \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)

\(A=\frac{1}{4}+\frac{1}{3^2}+...+\frac{1}{10^2}\)

\(\Rightarrow A>\frac{1}{4}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(\Rightarrow A>\frac{1}{4}+\frac{1}{3}-\frac{1}{11}\)

\(\Rightarrow A>\frac{65}{132}\)

Vậy \(A>\frac{65}{132}\) \(\left(đpcm\right)\)

12 tháng 5 2017

sao dễ vậy

13 tháng 4 2018

mình cũng cần làm bài này!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\(HELPME\)

4 tháng 5 2017

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}+\frac{1}{10.10}\)

\(A>\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.10}\)

\(A>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(A>1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)

\(A>1+0+0+0+...+0-\frac{1}{10}\)

\(A>1-\frac{1}{10}=\frac{9}{10}\)

\(\Rightarrow A>\frac{5}{10}=\frac{1}{2}\)

mà : \(\frac{1}{2}=\frac{66}{132}>\frac{65}{132}\)

\(\Rightarrow A>\frac{65}{132}\)

Vậy \(A>\frac{65}{132}\)

4 tháng 5 2017

phải là A = biểu thức đó và A = 9/10

23 tháng 6 2020

Ta có :

\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{92}+\frac{1}{10^2}\)

Mà \(\frac{1}{3^2}>\frac{1}{3.4}\)

\(\frac{1}{4^2}>\frac{1}{4.5}\)

\(...\)

\(\frac{1}{9^2}>\frac{1}{9.10}\)

\(\frac{1}{10^2}>\frac{1}{10.11}\)

\(\Rightarrow A-\frac{1}{2^2}>\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)

\(\Rightarrow A-\frac{1}{2^2}>\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(\Rightarrow A-\frac{1}{2^2}>\frac{1}{3}-\frac{1}{11}\)

\(\Rightarrow A-\frac{1}{4}>\frac{8}{33}\)

\(\Rightarrow A>\frac{8}{33}+\frac{1}{4}\)

\(\Rightarrow A>\frac{65}{132}\left(dpcm\right)\)

5 tháng 5 2019

A=\(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)

A=\(\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{9}+\frac{1}{10}-\frac{1}{10}\)

A= 0

=> A>\(\frac{65}{132}\)

15 tháng 5 2017

\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\)

\(A>\frac{1}{2.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)

\(=\frac{1}{2.2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+\frac{1}{5}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{2.2}+\frac{1}{3}-\frac{1}{11}\)

\(=\frac{65}{132}\)

\(\Rightarrow A>\frac{65}{132}\left(ĐPCM\right)\)

tất

nhiên

là lm

đc 

nhìn đã biết đc quy ;uật r ko cần phải đọc lâu lm j

4 tháng 4 2018

\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(A< 1-\frac{1}{10}=\frac{9}{10}\)

\(=>A>\frac{65}{132}\)

25 tháng 2 2018

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

TA có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\left(đpcm\right)\)