Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}\times\frac{3}{4}......\frac{9999}{10000}\)
Đặt : \(B=\frac{2}{3}\times\frac{4}{5}\times\frac{6}{7}.......\frac{10000}{10001}\)
Vì \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};.....\frac{9999}{10000}< \frac{10000}{10001}\)
Nên A<B mà A>0; B>0
\(\Rightarrow A^2< A\times B=\left(\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}.....\frac{9999}{10000}\right)\times\left(\frac{2}{3}\times\frac{4}{5}\times\frac{6}{7}......\frac{10000}{10001}\right)\)\(=\frac{1}{2}\times\frac{2}{3}\times\frac{4}{5}......\frac{9999}{10000}\times\frac{10000}{10001}\)\(=\frac{1}{10001}< \frac{1}{10000}=\frac{1}{100^2}=0.01^2\)\(\Rightarrow A^2< 0.01^2\)hay A < 0.01
Ta có: \(0,01=\frac{1}{100}\)
Mà \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)
Ta thấy: \(\frac{1}{100}=\frac{100}{10000}\)
Vì \(\frac{9999}{10000}>\frac{100}{10000}hay\frac{9999}{10000}>\frac{1}{100}\)
Nên \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}>\frac{1}{100}hay\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}>0,01\)
Vậy \(A>0,01\)
Ta có: \(0,01=\frac{1}{100}\)
Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{10000}{10001}\)
Xét \(AB=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{9999}{10000}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{10000}{10001}\)
\(\Leftrightarrow\)\(AB=\frac{1.2.3.4.5.6.....9999.10000}{2.3.4.5.6.7.....10000.10001}\)
\(\Leftrightarrow\)\(AB=\frac{1}{10001}\)
Vì A < B
\(\Rightarrow\)A2 < AB
\(\Rightarrow A^2< \frac{1}{10001}< \frac{1}{10000}\)
\(\Rightarrow A< \frac{1}{100}hayA< 0,01\)
Vậy A < 0,01
https://h.vn/hoi-dap/question/203861.html
bạn tham khảo nhé
Có A = 1/2.3/4.5/6 ... 9999/10000
Đặt B = 2/3.4/5.6/7 ... 10000/10001
Ta có A.B = 1/2.2/3.3/4 ... 10000/10001 = 1/10001 (1)
Lại có :
1/2 < 2/3
3/4 < 4/5
................
9999/10000 < 10000/10001
=>1/2.3/4.....9999/10000<2/3.4/5.....10000/10001
=> A < B => A² < A.B (2)
(1),(2) => A² < 1/10001 => A²<1/10000=>A<1/100=0,01(đpcm)
#Chino
A<2/3*4/5*6/7...10000/10001
A^2<A*(2/3*4/5*6/7...10000/10001)
A^2<\(\frac{1\cdot2\cdot3\cdot4\cdot5\cdot6...9999\cdot10000}{2\cdot3\cdot4\cdot5\cdot6\cdot7...10000\cdot10001}\)
A^2<1/10001
0,01=1/100
1/100^2=1/10000
A^2<1/10001<1/10000