\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1+\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(A<1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}<2\)

10 tháng 5 2017

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}.\)

\(A=1+\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+.......+\frac{1}{50\cdot50}\)

\(< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{49\cdot50}.\)

\(\Rightarrow1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(1+1-\frac{1}{50}< 2\)

=>A<2

ok xong

12 tháng 6 2020

A = \(\frac{1}{1^2}\) + \(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)\(\frac{1}{4^2}\) + .... + \(\frac{1}{50^2}\)

A = 1 + \(\frac{1}{2.2}\)\(\frac{1}{3.3}\)\(\frac{1}{4.4}\)+ ...... + \(\frac{1}{50.50}\)< 1 + \(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+ ...... + \(\frac{1}{49.50}\)

A < 1 + ( 1 - \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+ ...... + \(\frac{1}{49}\)\(\frac{1}{50}\))

A < 1 + ( 1 - \(\frac{1}{50}\))

A < 1 + 1 - \(\frac{1}{50}\)

A < 2 - \(\frac{1}{50}\)

=> A < 2

4 tháng 1 2018

Bạn xem lời giải ở đường link sau nhé:

Câu hỏi của nguyenducminh - Toán lớp 6 - Học toán với OnlineMath

4 tháng 1 2018

A=\(\frac{1}{1^2}\)\(+\frac{1}{2^2}\)\(+\frac{1}{3^2}\)\(+...+\frac{1}{50^2}\)

A<1\(+\frac{1}{1.2}\)\(+\frac{1}{2.3}\)\(+...\frac{1}{49.50}\)

=1+1-\(-\frac{1}{2}\)\(+\frac{1}{2}\)\(-\frac{1}{3}\)\(+...+\frac{1}{49}\)\(-\frac{1}{50}\)

=\(1+1-\frac{1}{50}\)

=\(2-\frac{1}{50}\)\(< 2\)

\(\Rightarrow A< 2\)

28 tháng 4 2018

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}< 2\)

\(\Rightarrow A< 2\)

15 tháng 3 2017

Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)

Vì \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};..;\frac{1}{50.50}< \frac{1}{49.50}\)nên :

\(\Rightarrow\)  \(1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

Ta có : \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=1+\left(1-\frac{1}{50}\right)\)\(=1+\frac{49}{50}\)

Vì \(\frac{49}{50}< 1\)nên \(1+\frac{49}{50}< 2\)\(\Rightarrow\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)

\(\Rightarrow\)\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)

         

6 tháng 5 2017

\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(.......\)
\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Mà \(\frac{49}{50}< 2\)
\(\Rightarrow A< 2\)
 

15 tháng 5 2017

a<2 ai k cho mik, mik se k lại hứa thế lun nói là làm

11 tháng 4 2017

\(\frac{1}{2^2}< \frac{1}{1.2}\)

...................\(\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

\(\Rightarrow A< 1-\frac{1}{50}< \frac{49}{50}< 1< 2\)

10 tháng 4 2017

1/2^2<1/1*2;1/3^2<1/2*3;1/4^2<1/3*4;1/50^2<1/49*50

ta có:

   =>    1/1^2+1/2*3+1/3*4+...+1/49*50

  <=>   1/1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50

  <=>   1-1/50 < 2

    =>   A < 2

2 tháng 5 2017

\(A=\frac{1}{1^1}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

Ta thấy \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{50^2}< \frac{1}{49.50}\)

Khi đó \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{49.50}=B\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{49}-\frac{1}{50}< 1\)

Vì \(A< 1+B\)mà \(B< 1\)nên \(B+1< 2\)do đó \(A< 2\)

Vậy \(A< 2\)

2 tháng 5 2017

1/12+1/22+....+1/502<1/1+1/1x2+1/2x3+....+1/49x50=1-1/50=49/50<2

=>A<2(đpcm)

2 tháng 5 2015

Ta có:

1/2^2<1/1.2

1/3^2<1/2.3

...

1/50^2<1/49.50

=>1/2^2+1/3^2+...+1/50^2<1/1.2+1/2.3+...+1/49.50

=>1/2^2+1/3^2+...+1/50^2<1-1/2+1/2-1/3+...+1/49-1/50

=>1/2^2+1/3^2+...+1/50^2<1-1/50<1

=>1+(1/2^2+1/3^2+...+1/50^2)<1+1

=>1/1^21/2^2+1/3^2+...+1/50^2<2

 

 

19 tháng 4 2017

câu b dễ