K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(16\cdot A=\dfrac{16\cdot\left(4^{15}+1\right)}{4^{17}+1}\)

\(\Leftrightarrow16\cdot A=\dfrac{4^{17}+16}{4^{17}+1}=1+\dfrac{15}{4^{17}+1}\)

Ta có: \(16\cdot B=\dfrac{16\cdot\left(4^{12}+1\right)}{4^{14}+1}\)

\(\Leftrightarrow16\cdot B=\dfrac{4^{14}+16}{4^{14}+1}=1+\dfrac{15}{4^{14}+1}\)

Ta có: \(4^{17}+1>4^{14}+1\)

\(\Leftrightarrow\dfrac{15}{4^{17}+1}< \dfrac{15}{4^{14}+1}\)

\(\Leftrightarrow\dfrac{15}{4^{17}+1}+1< \dfrac{15}{4^{14}+1}+1\)

\(\Leftrightarrow16A< 16B\)

hay A<B

2 tháng 4 2018

* Cách 1 : 

Ta có : 

\(16A=\frac{4^{17}+16}{4^{17}+1}=\frac{4^{17}+1+15}{4^{17}+1}=\frac{4^{17}+1}{4^{17}+1}+\frac{15}{4^{17}+1}=1+\frac{15}{4^{17}+1}\)

\(16B=\frac{4^{14}+16}{4^{14}+1}=\frac{4^{14}+1+15}{4^{14}+1}=\frac{4^{14}+1}{4^{14}+1}+\frac{15}{4^{14}+1}=1+\frac{15}{4^{14}+1}\)

Vì \(\frac{15}{4^{17}+1}< \frac{15}{4^{14}+1}\) nên \(1+\frac{15}{4^{17}+1}< 1+\frac{15}{4^{14}+1}\)

\(\Rightarrow\)\(16A< 16B\) hay \(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

2 tháng 4 2018

\(4^2.A=\frac{4^2\left(4^{15}+1\right)}{4^{17}+1}\)\(4^2.B=\frac{4^2\left(4^{12}+1\right)}{4^{14}+1}\)

=> \(4^2.A=\frac{4^{17}+4^2}{4^{17}+1}\);\(4^2.B=\frac{4^{14}+4^2}{4^{14}+1}\)

=> \(4^2.A=\frac{4^{17}+1+4^2-1}{4^{17}+1}\)\(4^2.B=\frac{4^{14}+1+4^2-1}{4^{14}+1}\)

=> \(4^2.A=\frac{4^{17}+1}{4^{17}+1}+\frac{4^2-1}{4^{17}+1}\)\(4^2.B=\frac{4^{14}+1}{4^{14}+1}+\frac{4^2-1}{4^{14}+1}\)

=> \(4^2.A=1+\frac{4^2-1}{4^{17}+1}\)\(4^2.B=1+\frac{4^2-1}{4^{14}+1}\)

Mà \(4^{17}>4^{14}\)

=> \(4^{17}+1>4^{14}+1\)

=> \(\frac{4^2-1}{4^{17}+1}< \frac{4^2-1}{4^{14}+1}\)

=> \(1+\frac{4^2-1}{4^{17}+1}< 1+\frac{4^2-1}{4^{14}+1}\)

=> \(4^2.A< 4^2.B\)

=> \(A< B\)

22 tháng 3 2023

4 mũ 15+1/4 mũ 17 +1= 1/16+1

4 mũ 12+1/ 4 mũ 14+1= 1/16+1

suy ra 1/17=1/17

suy ra A=B

nhớ tích cho tớ nhé

 

Câu1:

a: \(=2008^2-\left(2008-2\right)\left(2008+2\right)\)

\(=2008^2-\left(2008^2-4\right)\)

=4

b: \(=\dfrac{23\cdot29\cdot10101}{23\cdot29\cdot10101}=1\)

c: \(=\dfrac{\left(2^{17}+5^{17}\right)\left(3^{14}-5^{12}\right)\cdot\left(16-16\right)}{15^2+5^3+67^7}\)

=0

17 tháng 4 2017

ời giải:

Giải bài 158 trang 64 SGK Toán 6 Tập 2 | Giải toán lớp 6

17 tháng 4 2017

a) \(\dfrac{-1}{-4}\)=\(\dfrac{1}{4}>0\)

\(\dfrac{3}{-4}< 0\)

\(\Rightarrow\dfrac{1}{4}>\dfrac{3}{-4}hay\dfrac{-1}{-4}>\dfrac{3}{-4}\)

b) Ta có:

\(\dfrac{15}{17}=1-\dfrac{2}{17}\\ \)

\(\dfrac{25}{27}=1-\dfrac{2}{27}\\ \\ \)

\(\dfrac{2}{17}>\dfrac{2}{27}\left(17< 27\right)\)

\(\Rightarrow1-\dfrac{2}{17}< 1-\dfrac{2}{27}\)hay \(\dfrac{15}{17}< \dfrac{25}{27}\)

28 tháng 2 2018

Ta có :

\(\dfrac{1}{11}>\dfrac{1}{20}\\ \dfrac{1}{12}>\dfrac{1}{20}\\ ..........\\ \dfrac{1}{20}=\dfrac{1}{20}\)

\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\\ \Rightarrow S>\dfrac{10}{20}\\ \Rightarrow S>\dfrac{1}{2}\)

23 tháng 4 2017

Câu 2:

\(A=2014+\dfrac{2014}{1+2}+\dfrac{2014}{1+2+3}+...+\dfrac{2014}{1+2+3+...+2013}\)

\(=2014\left(1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+2013}\right)\)

\(=2014\left(1+\dfrac{1}{2\left(2+1\right)}.2+\dfrac{1}{3\left(3+1\right)}.2+...+\dfrac{1}{2013\left(2013+1\right)}.2\right)\)

\(=2014\left(\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{2013.2014}\right)\)

\(=4028\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2013.2014}\right)\)

Bạn tự tính nốt nhé

23 tháng 4 2017

1)

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2011\cdot2012}\left(1\right)\)\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2011\cdot2012}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\\ =\dfrac{1}{1}-\dfrac{1}{2012}< 1\left(2\right)\)

Từ (1) và (2) ta có: A < 1

2)

\(A=2014+\dfrac{2014}{1+2}+\dfrac{2014}{1+2+3}+...+\dfrac{2014}{1+2+3+...+2013}\\ =2014\cdot\left(\dfrac{1}{1}+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+2013}\right)\\ =2014\cdot\left(\dfrac{1}{\left(1\cdot2\right):2}+\dfrac{1}{\left(2\cdot3\right):2}+\dfrac{1}{\left(3\cdot4\right):2}+...+\dfrac{1}{\left(2013\cdot2014\right):2}\right)\\ =2014\cdot\left(\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{2013\cdot2014}\right)\\ =2014\cdot2\cdot\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2013\cdot2014}\right)\\ =4028\cdot\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\right)\\ =4028\cdot\left(1-\dfrac{1}{2014}\right)\\ =4028\cdot\dfrac{2013}{2014}\\ =4026\)

3)

Để A là số nguyên thì \(6n+42⋮6n\Rightarrow42⋮6n\Rightarrow6n\inƯ\left(42\right)\)

\(Ư\left(42\right)=\left\{1;2;3;6;7;14;21;42\right\}\)

6n 1 2 3 6 7 14 21 42
n \(\dfrac{1}{6}\) \(\dfrac{1}{3}\) \(\dfrac{1}{2}\) 1 \(\dfrac{7}{6}\) \(\dfrac{7}{3}\) \(\dfrac{7}{2}\) 7

Vì n là số tự nhiên nên n = 1 hoặc n = 7

4)

\(A=\dfrac{17^{18}+1}{17^{19}+1}< \dfrac{17^{18}+1+16}{17^{19}+1+16}=\dfrac{17^{18}+17}{17^{19}+17}=\dfrac{17\cdot\left(17^{17}+1\right)}{17\cdot\left(17^{18}+1\right)}=\dfrac{17^{17}+1}{17^{18}+1}=B\)

Vậy A<B

1 tháng 8 2017

c) E = \(\dfrac{4116-14}{10290-35}\) và K = \(\dfrac{2929-101}{2.1919+404}\)

E = \(\dfrac{4116-14}{10290-35}\)

E = \(\dfrac{14.\left(294-1\right)}{35.\left(294-1\right)}\)

E = \(\dfrac{14}{35}\)

K = \(\dfrac{2929-101}{2.1919+404}\)

K = \(\dfrac{101.\left(29-1\right)}{101.\left(38+4\right)}\)

K = \(\dfrac{29-1}{34+8}\)

K = \(\dfrac{28}{42}\) = \(\dfrac{2}{3}\)

Ta có : E = \(\dfrac{14}{35}\) và K = \(\dfrac{2}{3}\)

\(\dfrac{14}{35}\) = \(\dfrac{42}{105}\)

\(\dfrac{2}{3}\) = \(\dfrac{70}{105}\)

Vậy E < K

Các câu còn lại tương tự

6 tháng 4 2017

a) \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)

\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.....\dfrac{779}{780}\)\(=\)