K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

ta có : \(\dfrac{3}{2}\)A= \(\dfrac{3}{4}+\)\(\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+\)\(...+\left(\dfrac{3}{2}\right)^{2013}\) (1)

A= \(\dfrac{1}{2}+\dfrac{3}{2}\)\(+\left(\dfrac{3}{2}\right)^2+...+\)\(\left(\dfrac{3}{2}\right)^{2012}\) (2)

Lấy (1) trừ đi (2) vế theo vế:

\(\dfrac{3}{2}A-A=\dfrac{3}{4}-\dfrac{1}{2}-\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^{2013}\)

\(\dfrac{1}{2}A=\left(\dfrac{3}{2}\right)^{2013}-\dfrac{5}{4}\Rightarrow A=\dfrac{3^{2013}}{2^{2012}}-\dfrac{5}{2}\)

ta có : \(B=\left(\dfrac{3}{2}\right)^{2013}:2=\dfrac{3^{2013}}{2^{2013}}.\dfrac{1}{2}=\dfrac{3^{2013}}{2^{2014}}\)

Vậy \(A-B=\dfrac{3^{2013}}{2^{2014}}-\left(\dfrac{3^{2013}}{2^{2012}}-\dfrac{5}{2}\right)\)

8 tháng 4 2017

x

20 tháng 4 2018

\(A=1+\dfrac{\dfrac{\left(1+2\right).2}{2}}{2}+\dfrac{\dfrac{\left(1+3\right).3}{2}}{3}+...+\dfrac{\dfrac{\left(1+2013\right).2013}{2}}{2013}\)

\(A=1+\dfrac{\dfrac{3.2}{2}}{2}+\dfrac{\dfrac{4.3}{2}}{3}+...+\dfrac{\dfrac{2014.2013}{2}}{2013}\)

\(A=1+\dfrac{3}{2}+\dfrac{2.3}{3}+...+\dfrac{1007.2013}{2013}\)

\(A=1+\dfrac{3}{2}+2+\dfrac{5}{2}...+1007\)

\(2A=2+3+4+5+6+...+2012+2013+2014\)

\(2A=\dfrac{\left(2+2014\right).2013}{2}\)

\(A=\dfrac{2016.2013}{4}=504.2013\)

20 tháng 4 2018

\(B=\dfrac{-2}{1.3}+\dfrac{-2}{2.4}+...+\dfrac{-2}{2012.2014}+\dfrac{-2}{2013.2015}\)

\(-B=\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2012.2014}+\dfrac{2}{2013.2015}\)

\(-B=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2012.2014}\right)\)

\(-B=\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2015-2013}{2013.2015}\right)+\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2014-2012}{2012.2014}\right)\)

\(-B=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2014}\right)\)

\(-B=\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2014}\right)\)

\(-B=\dfrac{2014}{2015}+\dfrac{2012}{2014.2}=\dfrac{2014^2+1006.2015}{2015.2014}\)

\(B=\dfrac{2014^2+1006.2015}{-2015.2014}\)

30 tháng 4 2018

https://hoc24.vn/hoi-dap/question/598367.html

7 tháng 5 2018

1/ \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}\)

\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B< \dfrac{1}{1}-\dfrac{1}{8}< 1\)

\(B< 1\)

2/ \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)

\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{19}{20}\)

\(B=\dfrac{1\times2\times3\times...\times19}{2\times3\times4\times...\times20}\)

\(B=\dfrac{1}{20}\)

3/ \(A=\dfrac{7}{4}\cdot\left(\dfrac{3333}{1212}+\dfrac{3333}{2020}+\dfrac{3333}{3030}+\dfrac{3333}{4242}\right)\)

\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)

\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{3.4}+\dfrac{33}{4.5}+\dfrac{33}{5.6}+\dfrac{33}{6.7}\right)\)

\(A=\dfrac{7}{4}.33.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)

\(A=\dfrac{231}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)

\(A=\dfrac{231}{4}\cdot\dfrac{4}{21}\)

\(A=11\)

4/ A phải là \(\dfrac{2011+2012}{2012+2013}\)

Ta có : \(B=\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011}{2013}+\dfrac{2012}{2013}=\dfrac{2011+2012}{2013}>\dfrac{2011+2012}{2012+2013}=A\)

\(\Rightarrow B>A\)

Bài 1: 

a: \(A=\dfrac{\left(85+\dfrac{7}{30}-83-\dfrac{5}{18}\right):\dfrac{8}{3}}{\dfrac{1}{25}}\)

\(=\left(2+\dfrac{7}{30}-\dfrac{5}{18}\right)\cdot\dfrac{3}{8}\cdot25\)

\(=\dfrac{180+21-25}{90}\cdot\dfrac{75}{8}\)

\(=\dfrac{176}{90}\cdot\dfrac{75}{8}=\dfrac{55}{3}\)

=>12,5% của A là 55/8x1/8=55/64

b: \(B=\dfrac{\left(6+\dfrac{3}{5}-3-\dfrac{3}{14}\right)\cdot\dfrac{36}{5}}{19.75:2.5}\)

\(=\dfrac{\left(3+\dfrac{27}{70}\right)\cdot\dfrac{36}{5}}{\dfrac{79}{10}}\)

\(=\dfrac{\dfrac{210+27}{70}\cdot\dfrac{36}{5}}{\dfrac{79}{10}}\)

\(=\dfrac{4266}{175}\cdot\dfrac{10}{79}=\dfrac{108}{35}\)

=>5% là 108/35x1/20=27/175

12 tháng 8 2017

a)\(\dfrac{2}{3}-\dfrac{3}{5}:\left(-1\dfrac{1}{5}\right)+\left(\dfrac{-2}{3}\right)\cdot\dfrac{3}{8}\)

\(=\dfrac{2}{3}-\dfrac{3}{5}\cdot\dfrac{-5}{6}+\left(\dfrac{-1}{4}\right)=\dfrac{5}{12}+\dfrac{1}{2}=\dfrac{11}{12}\)

b)\(17\dfrac{11}{9}-\left(6\dfrac{3}{13}+7\dfrac{11}{19}\right)+\left(10\dfrac{3}{13}-5\dfrac{1}{4}\right)=\dfrac{164}{9}-\left(\dfrac{81}{13}+\dfrac{144}{19}\right)+\left(\dfrac{133}{13}-\dfrac{21}{4}\right)=\dfrac{164}{9}-\dfrac{3411}{247}+\dfrac{259}{52}=\dfrac{6425}{684}\)

c)\(\left(\dfrac{-3}{2}\right)^2-\left[-2\dfrac{1}{3}-\left(\dfrac{3}{4}+\dfrac{1}{3}\right):2\dfrac{3}{5}\right]\cdot\left(\dfrac{-3}{4}\right)=\dfrac{9}{4}-\left[\dfrac{-7}{3}-\dfrac{13}{12}\cdot\dfrac{5}{13}\right]\cdot\left(\dfrac{-3}{4}\right)=\dfrac{9}{4}-\left(\dfrac{-11}{4}\right)\cdot\left(\dfrac{-3}{4}\right)=\dfrac{3}{16}\)

d)\(\dfrac{21}{33}:\dfrac{11}{5}-\dfrac{13}{33}:\dfrac{11}{5}+\dfrac{25}{33}:\dfrac{11}{5}+\dfrac{6}{11}=\dfrac{5}{11}\cdot\left(\dfrac{21}{33}-\dfrac{13}{33}+\dfrac{25}{33}\right)+\dfrac{6}{11}=\dfrac{5}{11}\cdot1+\dfrac{6}{11}=1\)

12 tháng 8 2017

\(a)\dfrac{2}{3}-\dfrac{3}{5}:\left(-1\dfrac{1}{5}\right)+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)

\(=\dfrac{2}{3}-\dfrac{3}{5}:\left(\dfrac{-6}{5}\right)+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)

\(=\dfrac{2}{3}-\dfrac{-1}{2}+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)

\(=\dfrac{2}{3}-\dfrac{-1}{2}+\dfrac{-1}{4}\)

\(=\dfrac{7}{6}+\dfrac{-1}{4}\)

\(=\dfrac{11}{12}\)

NV
3 tháng 12 2018

Đặt \(B=A\div C\)

\(C=2012+\dfrac{2011}{2}+...+\dfrac{1}{2012}=2012+\dfrac{2013-2}{2}+\dfrac{2013-3}{3}+...+\dfrac{2013-2012}{2012}\)

\(C=2012+\dfrac{2013}{2}+\dfrac{2013}{3}+...+\dfrac{2013}{2012}-1-1-...-1\)

\(C=2012+2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)-2011\)

\(C=1+2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)=\dfrac{2013}{2013}+2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)\)

\(C=2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)=2013.A\)

\(\Rightarrow B=\dfrac{A}{C}=\dfrac{1}{2013}\)

26 tháng 4 2018

\(\left(1+\dfrac{1}{2}\right)+\left(1+\dfrac{1}{2^2}\right)+...+\left(1+\dfrac{1}{2^{50}}\right)\)

= \(\left(1+1+1+...+1\right)+\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{50}}\right)\)(50 số 1 )

= \(50+\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{50}}\right)\)

A =\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{50}}\)

⇒ 2A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\)

⇒ 2A - A =\(1-\dfrac{1}{2^{50}}\)

=50+1-\(\dfrac{1}{2^{50}}\)=51-\(\dfrac{1}{2^{50}}>3\)