Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(\dfrac{1}{15}+\dfrac{14}{15}\right)+\left(\dfrac{9}{10}-2-\dfrac{11}{9}\right)+\dfrac{1}{157}\)
\(=1+\dfrac{1}{157}+\dfrac{81-180-110}{90}\)
\(=\dfrac{158}{157}+\dfrac{-209}{90}\simeq-1.315\)
b: \(=\dfrac{1}{5}+\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{2}{6}\)
=1/3-1/3
=0
c: \(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2015\cdot2017}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\)
=2016/2017
\(A=\dfrac{1}{2}+\dfrac{3-2}{3.2}+\dfrac{4-3}{3.4}+...+\dfrac{100-99}{100.99}\)
\(A=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}\)
\(A=\dfrac{99}{100}\)
\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+....+\dfrac{2}{2007.2009}+\dfrac{2}{2009..2011}\)
\(2B=\dfrac{3-1}{1.3}+\dfrac{5-3}{3,5}+...+\dfrac{2009-2007}{2009.2007}+\dfrac{2011-2009}{2011.2009}\)
\(2B=\dfrac{3}{3}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2011}\)
\(2B=1-\dfrac{1}{2011}\)
\(2B=\dfrac{2010}{2011}\)
\(B=\dfrac{2010}{4022}\)
bài giải:
đặt biểu thức bằng A
=> A= \(\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
ta thấy:\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< 3.\dfrac{1}{13}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< 3.\dfrac{1}{61}\)
=> A<\(\dfrac{1}{5}+\dfrac{3}{13}+\dfrac{3}{61}\)<\(\dfrac{1}{2}\)
=> đpcm.
a) A = {\(\dfrac{1}{n\left(n+1\right)}\)| \(n\in\mathbb{N},1\le n\le5\)}
b) B = {\(\dfrac{1}{n^2-1}\)|\(n\in\mathbb{N},2\le n\le6\)\(\)}
a)\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\left(1\right)\)
ĐK:\(x\ne0\)
\(\left(1\right)\Leftrightarrow\dfrac{x^3+1-\left(x^3-1\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2}{\left(x^2+1\right)^2-x^2}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2x-3}{x\left(x^4+x^2+1\right)}=0\Rightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)
\(\dfrac{9-x}{2009}+\dfrac{11-x}{2011}=2\Leftrightarrow\left(\dfrac{9-x}{2009}-1\right)+\left(\dfrac{11-x}{2011}-1\right)=0\Leftrightarrow\dfrac{-2000-x}{2009}+\dfrac{-2000-x}{2011}=0\\ \Leftrightarrow\left(-2000-x\right)\left(\dfrac{1}{2009}+\dfrac{1}{2011}\right)=0\Rightarrow x=-2000\)
\(5A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{11}{5^{11}}.\)
\(4A=5A-A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}=B-\dfrac{11}{5^{12}}.\)
\(5B=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{10}}.\)
\(4B=5B-B=1-\dfrac{1}{5^{11}}\)
\(\Rightarrow4A=\dfrac{1}{4}\left(1-\dfrac{1}{5^{11}}\right)-\dfrac{1}{5^{12}}< \dfrac{1}{4}\Rightarrow A< \dfrac{1}{16}\)
Đặt A = \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\)
2A = \(2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\)
2A = \(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\)
2A + A = \(\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\)
3A = \(1-\dfrac{1}{64}\)
3A = \(\dfrac{63}{64}\) < 1
hay 3A < 1
=> A < \(\dfrac{1}{3}\)
Vậy .................. (tự kết luận)
Ta có:\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}>4\cdot\dfrac{1}{16}=\dfrac{1}{4}\)
\(\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}>4\cdot\dfrac{1}{20}=\dfrac{1}{5}\)
=>\(\dfrac{1}{13}+\dfrac{1}{14}+...+\dfrac{1}{20}>\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{9}{20}\)
=>A>\(\dfrac{1}{12}+\dfrac{9}{20}\)
\(\dfrac{1}{12}>\dfrac{1}{20}\)
=>\(A>\dfrac{1}{20}+\dfrac{9}{20}=\dfrac{1}{2}\)
Vậy...
bn Xuân Tuấn Trịnh ơi tại sao 4.\(\dfrac{1}{16}\)zậy.