Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(M=3^{12}+3^{11}+10.5^{15}-2.3^{10}\)
\(\Rightarrow M=3^{12}+3^{11}-2.3^{10}+10.5^{15}\)
\(\Rightarrow M=3^{10}.\left(3^2+3-2\right)+10.5^{15}\)
\(\Rightarrow M=3^{10}.10+10.5^{15}\)
\(\Rightarrow M=10.\left(3^{10}+5^{15}\right)\)
Ta thấy: \(10.\left(3^{10}+5^{15}\right)⋮3^{10}+5^{15}\)
hay M \(⋮\)N
Đúng 100%
\(10^n\)có 1 chữ số 1 và n chữ số 0 nên tổng các chữ số của \(10^n+8\)bằng 9, do vậy nó chia hết cho 9
a) 1033+8=1...0 +8= 1...8 chia hết cho 2
1+8=9 chia hết cho 9
Bài 1:
ta có: \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Để A thuộc Z
=> 3/n-2 thuộc Z
=> n -2 chia hết cho 3
=> n - 2 thuộc Ư(3) = {1;-1;3;-3}
nếu n - 2 = 1 => n = 3 (TM)
n-2 = -1 => n = 1 (TM)
n - 2 = 3 => n = 5 (TM)
n -2 = -3 => n = - 1 (TM)
KL:...
\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Để \(A\in Z\Leftrightarrow3⋮\left(n-2\right)\Leftrightarrow n-2\inƯ\left(3\right)=\left\{-1;1;3;-3\right\}\)
Nếu n - 2 = -1 thì n = 1
Nếu n - 2 = 1 thì n = 3
Nếu n - 2 = 3 thì n = 5
Nếu n - 2 = -3 thì n = -1
Vậy Để A nguyên khi và chỉ khi n = {-1;1;3;5}
#)Giải :
Bài 1 :
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow N< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow N< 1-\frac{1}{100}\)
\(\Rightarrow N< \frac{99}{100}< \frac{3}{4}\)
\(\Rightarrow N< \frac{3}{4}\)
#~Will~be~Pens~#
Bài 1:
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Đặt \(S=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow S< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow S< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow S< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
\(\Rightarrow S< \frac{1}{2}\)
\(\Rightarrow N< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
Bài 2:
a) Để A là phân số \(\Leftrightarrow n-2\ne0\)
\(\Leftrightarrow n\ne2\)
Vậy \(n\ne2\)thì A là phân số .
b) Để A là số nguyên
\(\Leftrightarrow n+1⋮n-2\)
\(\Leftrightarrow n-2+3⋮n-2\)
mà \(n-2⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Tự tìm n
Bài 3:
áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)
Ta có: \(P=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow P< Q\)
mình nhầm câu b:
Áp dụng....
A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)
=10^10+1/10^11+1=B
Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)
a) Với a<b=>a+n/b+n >a/b
Với a>b=>a+n/b+n<a/b
Với a=b=>a+n/b+n=a/b
b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:
A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]
=(10^10)+1/(10^11)+1=B
Vậy A=B
A = 314 + 312 = 5 314 410
B = 10 x 177 147 = 1 441 470
Mà 5 314 410 : 1 441 470 = 3, 686 798 893 = 3, 68
Nên: A : B = 3, 68
~ Chúc bạn học tốt ~
a)Xét \(A=3^{14}+3^{12}\)
\(\Rightarrow A=3^{12}.\left(3^2+1\right)\)
\(\Rightarrow A=3^{12}.10\)
Lấy A : B, ta được: \(A:B=\frac{3^{12}.10}{3^{11}.10}=3\)
- Hình như tớ giải cho cậu PHẦN b rồi ..