\(2+2^2+2^3+.....+2^{59}+2^{ }^{60}\)

a)Achia hết cho 2

B)a chia hết...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2023

a) \(A=2\left(1+2+2^2+...+2^{59}\right)⋮2\)

b) \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

c) \(A=2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^5+...+2^{58}\right)⋮7\)

13 tháng 10 2023

a) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰

= 2.(1 + 2 + 2² + ... + 2⁵⁸ + 2⁵⁹) 2

Vậy A ⋮ 2

b) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰

= (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)

= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)

= 2.3 + 2³.3 + ... + 2⁵⁹.3

= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3

Vậy A ⋮ 3

c) A = 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + ... + 2⁵⁸ + 2⁵⁹ + 2⁶⁰

= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)

= 2.7 + 2⁴.7 + ... + 2⁵⁸.7

= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7

Vậy A ⋮ 7

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

7 tháng 8 2016

a) \(A=2+2^2+2^3+2^4+...+2^{60}\)

        \(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

        \(=2\left(2+1\right)+2^3\left(2+1\right)+...+2^{59}\left(2+1\right)\)

        \(=3\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy \(A⋮3\)

b) \(A=2+2^2+2^3+2^4+...+2^{60}\)

        \(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)

        \(=2\left(1+2^2\right)+2^2\left(1+2^2\right)+...+2^{58}\left(1+2^2\right)\)

        \(=5\left(2+2^2+...+2^{58}\right)⋮5\)

Vậy \(A⋮5\)

c) \(A=2+2^2+2^3+2^4+...+2^{60}\)

        \(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

        \(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+..+2^{58}\left(1+2+2^2\right)\)

        \(=7\left(2+2^4+...+2^{58}\right)⋮7\)

Vậy \(A⋮7\)

 

7 tháng 8 2016

a) \(A=2+2^2+2^3+2^4+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy \(A⋮3\)

22 tháng 2 2020

    A = 2 + 22 + 23 +......+ 260

-> A = ( 2 + 22 ) + ( 23 + 24 ) + ....+ ( 259 + 260 )

-> A = 2.( 1+2 ) + 23.( 1+2) +......+ 259.( 1+2)

-> A = 2.3 + 23.3 +......+ 259.3

-> A= 3.( 2 + 23 +.....+ 259)

      Vì 3 chia hết cho 3

-> 3.( 2 + 23 +...+259)

      Vậy  A chia hết cho 3

    

   A = 2 + 22  + 23 +.......+ 260

-> A = ( 2 + 22 + 23 ) +.......+ ( 258 + 259 + 260 )

-> A = 2.( 1 + 2 + 22 ) +......+  258 .( 1 + 2 + 22 )

-> A = 2.7 +.....+ 258.7

-> A = 7.( 2 + .....+ 258 )

      Vì 7 chia hết cho 7

-> 7.( 2+....+ 258 )

     Vậy A chia hết cho 7

    A = 2 + 22 + 23 +......+ 260

-> A = ( 2 + 22 + 23 + 24 ) +.....+ ( 257 + 258 + 259 + 260 )

-> A = 2.( 1 + 2 + 22 + 23 ) +.....+ 257.( 1+ 2 + 22 + 23 )

-> A = 2.15 + ......+ 257.15

-> A = 15.( 2 +.... + 257 )

     Vì 15 chia hết cho 15

-> 15.( 2 +....+ 257 )

     Vậy A chia hết cho 15

8 tháng 12 2016

a)A chia hết cho 6 vì trong A có 2+2^2=2+4=6 chia hết cho 6

b)A chia hết cho 7 vì trong A có 2+2^2+2^3=2+4+8=14 chia hết cho7

c)A chia hết cho 30 vì trong A có 2+2^2+2^3+2^4=2+4+8+16=30

15 tháng 8 2020

***** HIỂN NHIÊN    \(A⋮2\)     (1)

a)    \(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)

\(A=2\left(2+1\right)+2^3\left(1+2\right)+...+2^{2003}\left(1+2\right)\)

\(A=2.3+2^3.3+...+2^{2003}.3⋮3\)

=>    \(A⋮3\)      (2)

TỪ (1) VÀ (2) =>    \(A⋮6\)

VẬY TA CÓ ĐPCM.

b)     \(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2002}+2^{2003}+2^{2004}\right)\)

=>   \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2002}\left(1+2+2^2\right)\)

=>    \(A=2.7+2^4.7+...+2^{2002}.7⋮7\)

VẬY TA CÓ ĐPCM.

c)     TA CÓ:      \(A⋮6\left(cmt\right)\)      (3)

\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{2001}+2^{2002}+2^{2003}+2^{2004}\right)\)

=>    \(A=2\left(1+2+2^2+2^3\right)+...+2^{2001}\left(1+2+2^2+2^3\right)\)

=>    \(A=2.15+....+2^{2001}.15⋮5\)

=>     \(A⋮5\)      (4)

TỪ (3) VÀ (4) =>     \(A⋮30\)

VẬY TA CÓ ĐPCM.

3 tháng 11 2016

a) 90.a + 33.b chia hết cho 3
=30+30.a+30+3.b
=30.(3+1+1)ab
=30.5ab
=150ab
150 chia hết cho 3 hay 150ab chia hết cho 3
vậy .............

 


 



 

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!