K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

Lời giải:

$A=n(n-1)(n+1)(n^2+1)=n(n^2-1)(n^2+1)$

Vì $n^2$ là scp nên $n^2$ có tận cùng là $0,1,4,5,6,9$

Nếu $n^2$ tận cùng là $0$ thì $n$ tận cùng là $0$

$\Rightarrow A=n(n-1)(n+1)(n^2+1)\vdots 10\vdots 5$

Nếu $n^2$ tận cùng là $5$ thì $n$ tận cùng là $5$

$\Rightarrow n\vdots 5\Rightarrow A=n(n-1)(n+1)(n^2+1)\vdots 5$

Nếu $n^2$ tận cùng là $1$ hoặc $6$ thì $n^2-1$ tận cùng là $0$ hoặc $5$

$\Rightarrow n^2-1\vdots 5\Rightarrow A\vdots 5$

Nếu $n^2$ tận cùng là $4$ hoặc $9$ thì $n^2+1$ tận cùng là $5$ hoặc $0$

$\Rightarrow n^2+1\vdots 5\Rightarrow A\vdots 5$

Vậy tóm lại $A\vdots 5$

----------------

Lại có:

$A=n(n^2-1)(n^2+1)=n(n^4-1)$

Nếu $n$ chẵn thì $A=n(n^4-1)\vdots 2$

Nếu $n$ lẻ thì $n^4-1$ chẵn $\Rightarrow A=n(n^4-1)\vdots 2$
Vậy tóm lại $A\vdots 2$

Vậy $A\vdots 2; A\vdots 5\Rightarrow A\vdots 10$

b.

$A=n(n^4-1)=n^5-n\vdots 10$

$\Rightarrow n^5, n$ có cùng chữ số tận cùng.

25 tháng 4 2015

Câu b ko biết

câu a:

20^n+16^n-3^n-1=(20^n-1^n)+(16^n-3^n)=(20-1)k+(256^x-9^x)                                      (n=2x)

=19k+247x=19(k+13x) chia hết cho 19

20^n+16^n-3^n-1=(20^n-3^n)+(16^n-1)=(20-3)f+(256^x-1^x)=17f+(256-1)x

=17f+255x=17(x+15x) chia hết cho 17

=>20^n+16^n-3^n-1 chia hết cho 17;19

=> 20^n+16^n-3^n-1 chia hết cho 323

=>ĐPCM neeys đúng cho tớ **** nha!

25 tháng 4 2015

Cảm ơn cậu nhưng cố giúp tớ câu b lun đi!

6 tháng 4 2016

vi n la so tu nhien chan nen gia su n=0=> (20^0+16^0-3^0-1) chia het cho 323

gia su n =2 => (20^2+16^2-3^2-1) chiaa het cho 323

tu nhung dieu tren nen voi moi n la so tu nhien  chan thi (20^n+16^n-3^n-1)chia het cho 323

20 tháng 9 2023

a) Xét hiệu : \(n^5-n\)

Đặt : \(A\text{=}n^5-n\)

Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)

\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)

Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .

\(\Rightarrow A⋮2\)

Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)

\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)

\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)

Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.

Do đó : \(A⋮10\)

\(\Rightarrow A\) có chữ số tận cùng là 0.

Suy ra : đpcm.

b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)

Với : n= 3k+1

Thì : \(n^2\text{=}9k^2+6k+1\)

Do đó : \(n^2\) chia 3 dư 1.

Với : n=3k+2

Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)

Do đó : \(n^2\) chia 3 dư 1.

Suy ra : đpcm.

23 tháng 10 2016

Linh ơi bài này ở đâu thế

23 tháng 10 2016

bài này ở toán buổi chiều

19 tháng 11 2017

Câu a)

Giả sử k là ước của 2n+1 và n 

Ta có 

\(2n+1⋮k\)

\(n⋮k\)

Suy ra 

\(2n+1⋮k\)

\(2n⋮k\)

Suy ra \(2n+1\)là số lẻ (với mọi giá trị n thuộc N)

Suy ra \(2n\)là số chẵn (với mọi giá trị n thuộc N)

Mà 2 số trên là 2 số tự nhiên liên tiếp

Suy ra \(2n+1\)và \(2n\)là 2 số nguyên tố cùng nhau

Vậy \(2n+1\)và \(n\)là 2 số nguyên tố cùng nhau (đpcm)

Câu b)

Vì n lẻ nên

(n-1) là số chẵn

(n+1) là số chẵn

(n+2) là số chẵn

(n+5) là số chẵn

Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn

Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)

Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384

Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3

Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384

Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)

Câu c)

Đang thinking .........................................

20 tháng 11 2017

LÊ NHẬT KHÔI ƠI BẠN LÀM CÓ ĐÚNG KO??? GIÚP MÌNH CÂU C VƠI NHA !!!