K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

\(A=n^3+3n^2+5n+3\)

\(=n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n+3\right)\)

\(=\left(n+1\right)\left[n\left(n+2\right)+3\right]\)

\(=n\left(n+1\right)\left(n+2\right)+3\left(n+1\right)\)

Do n ; n + 1 ; n + 2 là 3 số nguyên dương liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)

\(\Rightarrow...+3\left(n+1\right)⋮3\)

hay \(A⋮3\left(đpcm\right)\)

8 tháng 2 2019

\(A=n^3+3n^2+6n-\left(n+3\right)+6\)

\(=\left(n^2-1\right)\left(n+3\right)+6n+6\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)+6\left(n+1\right)\)

Có: \(n+3\equiv n\)(mod 3)

\(\left(n-1\right)n\left(n+1\right)⋮3\forall n\in Z^+\)

nên \(A⋮3\forall n\in Z^+\)

27 tháng 2 2016

Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3) 
                            =(n-3)(n^2-1)
                            =(n-3)(n-1)(n+1)

Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
                                                                         =8(k-1)k(k+1)

vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ

27 tháng 2 2016

Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
                           =n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp 
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120

25 tháng 9 2018

a/ n thuộc Z nha

a: \(=3n^4-3n^3-11n^3+11n^2+10n^2-10n\)

\(=\left(n-1\right)\left(3n^3-11n^2+10n\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)

\(=3n\left(n-1\right)\left(n+1\right)\left(n-2\right)-8n\left(n-2\right)\left(n-1\right)\)

Vì n;n-1;n+1;n-2 là 4 số liên tiếp

nên n(n-1)(n+1)(n+2) chia hết cho 4!=24

mà -8n(n-2)(n-1) chia hết cho 24

nên A chia hết cho 24

b: \(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)

Vì đây là 5 số liên tiếp

nên \(n\left(n-1\right)\cdot\left(n-2\right)\left(n+1\right)\left(n+2\right)⋮5!=120\)

 

27 tháng 3 2016

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

16 tháng 8 2016

a) = (a + 1/2)2 +3/4 không chia hết cho 25 với mọi a thuộc z

16 tháng 8 2016

bạn làm cụ thể hộ mình đc ko?

16 tháng 1 2018

Ta có:\(A=n^3+3n^2+5n+3\)=\(n^3-n+3n^2+6n+3\)

=\(n\left(n^2-1\right)+3\left(n^2+2n+1\right)\)

\(=\left(n-1\right)n\left(n+1\right)+3\left(n+1\right)^2\)

Vì \(\left(n-1\right)n\left(n+1\right)\) là tích của 3 số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3\)

Mà \(3\left(n+1\right)^2⋮3\) nên \(A=n^3+3n^2+5n+3⋮3\) với mọi n

6 tháng 10 2018

a,  29 - 1 = 511 không chia hết cho 3.

b, \(5^6-10^4=5^6-5^4.2^4\)

                     \(=5^4\left(5^2-2^4\right)=5^4.9⋮9\)

c, \(\left(n+6\right)^2-\left(n-6\right)^2=\left(n+6+n-6\right)\left(n+6-n+6\right)=2n.12=24n⋮24\)

d,\(\left(3n+4\right)^2-16=9n^2+24n+16-16=9n^2+24n⋮3\)

Chúc bạn học tốt