K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 a^4 - 1 = (a²-1)(a²+1) 

* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0 
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3 
=> a^4 - 1 chia hết cho 3 

* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4 
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4 
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5 
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5 
=> a^4 - 1 chia hết cho 5 
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1 
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2) 
a^4 - 1 = 8(m)(m+1)(2m²+2m+1) 
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16 

từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240 

ta có khai triển: 
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p 

ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p 
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240 

         Lần sau ghi dấu nhé pn !

 a^4 - 1 = (a²-1)(a²+1) 

* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0 
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3 
=> a^4 - 1 chia hết cho 3 

* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4 
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4 
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5 
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5 
=> a^4 - 1 chia hết cho 5 
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1 
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2) 
a^4 - 1 = 8(m)(m+1)(2m²+2m+1) 
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16 

từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240 

ta có khai triển: 
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p 

ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p 
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240 .

             Lần sau ghi dấu nhé pn !

10 tháng 2 2016

 a^4 - 1 = (a²-1)(a²+1) 

* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0 
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3 
=> a^4 - 1 chia hết cho 3 

* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4 
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4 
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5 
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5 
=> a^4 - 1 chia hết cho 5 
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1 
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2) 
a^4 - 1 = 8(m)(m+1)(2m²+2m+1) 
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16 

từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240 

ta có khai triển: 
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p 

ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p 
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240 

6 tháng 11 2018

Ta có :

\(\left(a+2\right)^2-\left(a-2\right)^2\)

\(=\left(a+2-a+2\right)\left(a+2+a-2\right)\)

\(=4.2a\)

\(=8a\)

\(a\in Z\Leftrightarrow8a⋮4\)

\(\Leftrightarrow\left(a+2\right)^2-\left(a-2\right)^2⋮4\left(đpcm\right)\)

1 tháng 9 2018

A=4a^2+8ab+4b^2 - 5ab-15b^2 = 4(a+b)^2 - 5b(a+3b) ta thấy -5b(a+3b) luôn là 1 số chia hết 5

Vậy A chia hết 5 thì (a+b) cũng chia hết 5 => B = a^4-b^4 = (a^2+b^2)(a+b)(a-b) cũng chia hết 5

26 tháng 9 2020

a) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì p2 + 8 = 22 + 8 = 12 (không là số nguyên tố, loại)

* Xét p = 3 thì p2 + 8 = 32 + 8 = 17 (là số nguyên tố, thỏa mãn). Khi đó p2 + 2 = 32 + 2 = 11 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì p2 + 8 = (3k + 1)2 + 8 = 9k2 + 6k + 9 = 3 (3k2  + 2k + 3)\(⋮\)3 mà 3 (3k+2k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì p2 + 8 = (3k + 2)2 + 8 = 9k2 + 12k + 12 = 3 (3k2  + 6k + 4)\(⋮\)3 mà 3 (3k2  + 6k + 4) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và p2 + 8 là các số nguyên tố thì p2 + 2 là số nguyên tố (đpcm)

b) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì 8p2 + 1 = 8.22 + 1 = 33 (không là số nguyên tố, loại)

* Xét p = 3 thì 8p2 + 1 = 8.32 + 1 = 73 (là số nguyên tố, thỏa mãn). Khi đó 2p + 1 = 2.3 + 1 = 7 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì 8p2 + 1 = 8(3k + 1)2 + 1 = 8(9k2 + 6k + 1) + 1 = 3(24k2 + 16k + 3)\(⋮\)3 mà 3(24k2 + 16k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì 8p2 + 1 = 8(3k + 2)2 + 1 = 8(9k2 + 12k + 4) + 1 = 3(24k2 + 32k + 11)\(⋮\)3 mà 3(24k2 + 32k + 11) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và 8p2 + 1 là các số nguyên tố thì 2p + 1 là số nguyên tố (đpcm)

11 tháng 8 2015

n3-n=n(n2-1)=n(n-1)(n+1)

Do n;n+1;n-1 là 3 số nguyên liên tiếp nên trong đó tồn tại 1 số chia hết chio 2 và 1 số chia hết cho 3

=>n(n-1)(n+1) chia hết cho 6

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

11 tháng 2 2016

Đây là điều đương nhiên ko cần phải chứng minh
 

27 tháng 10 2016

a)\(f\left(x\right)=x^4+2x^3-x-2\)

\(=x^4+2x^3+x^2-x^2-x-2\)

\(=\left(x^2+x\right)^2-\left(x^2+x\right)-2\)

Đặt \(x^2+x=t\) ta có:

\(=t^2-t-2\)\(=\left(t-2\right)\left(t+1\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+1\right)\)

26 tháng 10 2014

A= x2-2x = ( x2-2x + 1 ) - 1 = -1 (x-1)2 . Vì (x-1)2 lớn hơn hoặc bằng 0 ==> Min A = 1. Khi x = 1 

B = -( x2- 4x + 4 +1) = -1-(x-2)2 < -1 ==> Max B = - 1 khi x = 2 

Phân tích đa thức x4 + 6x3+11x2+6x = x(x+1)(x+2)(x+3) thành nhân tử tích của 4 số tự nhiên liên tiếp chia hết cho 24

20 tháng 7 2016

cại đcm may