Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^4 - 1 = (a²-1)(a²+1)
* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3
=> a^4 - 1 chia hết cho 3
* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5
=> a^4 - 1 chia hết cho 5
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2)
a^4 - 1 = 8(m)(m+1)(2m²+2m+1)
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16
từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240
ta có khai triển:
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p
ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240
Lần sau ghi dấu nhé pn !
a^4 - 1 = (a²-1)(a²+1)
* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3
=> a^4 - 1 chia hết cho 3
* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5
=> a^4 - 1 chia hết cho 5
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2)
a^4 - 1 = 8(m)(m+1)(2m²+2m+1)
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16
từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240
ta có khai triển:
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p
ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240 .
Lần sau ghi dấu nhé pn !
Ta có :
\(\left(a+2\right)^2-\left(a-2\right)^2\)
\(=\left(a+2-a+2\right)\left(a+2+a-2\right)\)
\(=4.2a\)
\(=8a\)
Mà \(a\in Z\Leftrightarrow8a⋮4\)
\(\Leftrightarrow\left(a+2\right)^2-\left(a-2\right)^2⋮4\left(đpcm\right)\)
A=4a^2+8ab+4b^2 - 5ab-15b^2 = 4(a+b)^2 - 5b(a+3b) ta thấy -5b(a+3b) luôn là 1 số chia hết 5
Vậy A chia hết 5 thì (a+b) cũng chia hết 5 => B = a^4-b^4 = (a^2+b^2)(a+b)(a-b) cũng chia hết 5
a) Xét các trường hợp p nguyên tố:
* Xét p = 2 thì p2 + 8 = 22 + 8 = 12 (không là số nguyên tố, loại)
* Xét p = 3 thì p2 + 8 = 32 + 8 = 17 (là số nguyên tố, thỏa mãn). Khi đó p2 + 2 = 32 + 2 = 11 (là số nguyên tố, đpcm)
* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)
+) Nếu p = 3k + 1 thì p2 + 8 = (3k + 1)2 + 8 = 9k2 + 6k + 9 = 3 (3k2 + 2k + 3)\(⋮\)3 mà 3 (3k2 +2k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)
+) Nếu p = 3k + 2 thì p2 + 8 = (3k + 2)2 + 8 = 9k2 + 12k + 12 = 3 (3k2 + 6k + 4)\(⋮\)3 mà 3 (3k2 + 6k + 4) > 3 nên không là số nguyên tố (loại trường hợp này)
Vậy nếu p và p2 + 8 là các số nguyên tố thì p2 + 2 là số nguyên tố (đpcm)
b) Xét các trường hợp p nguyên tố:
* Xét p = 2 thì 8p2 + 1 = 8.22 + 1 = 33 (không là số nguyên tố, loại)
* Xét p = 3 thì 8p2 + 1 = 8.32 + 1 = 73 (là số nguyên tố, thỏa mãn). Khi đó 2p + 1 = 2.3 + 1 = 7 (là số nguyên tố, đpcm)
* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)
+) Nếu p = 3k + 1 thì 8p2 + 1 = 8(3k + 1)2 + 1 = 8(9k2 + 6k + 1) + 1 = 3(24k2 + 16k + 3)\(⋮\)3 mà 3(24k2 + 16k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)
+) Nếu p = 3k + 2 thì 8p2 + 1 = 8(3k + 2)2 + 1 = 8(9k2 + 12k + 4) + 1 = 3(24k2 + 32k + 11)\(⋮\)3 mà 3(24k2 + 32k + 11) > 3 nên không là số nguyên tố (loại trường hợp này)
Vậy nếu p và 8p2 + 1 là các số nguyên tố thì 2p + 1 là số nguyên tố (đpcm)
n3-n=n(n2-1)=n(n-1)(n+1)
Do n;n+1;n-1 là 3 số nguyên liên tiếp nên trong đó tồn tại 1 số chia hết chio 2 và 1 số chia hết cho 3
=>n(n-1)(n+1) chia hết cho 6
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
a)\(f\left(x\right)=x^4+2x^3-x-2\)
\(=x^4+2x^3+x^2-x^2-x-2\)
\(=\left(x^2+x\right)^2-\left(x^2+x\right)-2\)
Đặt \(x^2+x=t\) ta có:
\(=t^2-t-2\)\(=\left(t-2\right)\left(t+1\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+1\right)\)
A= x2-2x = ( x2-2x + 1 ) - 1 = -1 (x-1)2 . Vì (x-1)2 lớn hơn hoặc bằng 0 ==> Min A = 1. Khi x = 1
B = -( x2- 4x + 4 +1) = -1-(x-2)2 < -1 ==> Max B = - 1 khi x = 2
Phân tích đa thức x4 + 6x3+11x2+6x = x(x+1)(x+2)(x+3) thành nhân tử tích của 4 số tự nhiên liên tiếp chia hết cho 24
a^4 - 1 = (a²-1)(a²+1)
* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3
=> a^4 - 1 chia hết cho 3
* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5
=> a^4 - 1 chia hết cho 5
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2)
a^4 - 1 = 8(m)(m+1)(2m²+2m+1)
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16
từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240
ta có khai triển:
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p
ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240