K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2021

Ta thấy: a2-1=(a-1).(a+1)

Vì p là số nguyên tố lớn hơn 3

=>p=2k+1

=>(a-1).(a+1)=(2k+1-1).(2k+1+1)=2k.(2k+2)

=2k.2.(k+1)

=4.k.(k+1)

Vì k và k+1 là 2 số tự nhiên liên tiếp

=>k.(k+1) chia hết cho 2

=>4.(k).(k+1) chia hết cho 8

=>a2-1 chia hết cho 8(1)

Lại có:

Vì a là số nguyên tố lớn hơn 3

=>a không chia hết cho 3

=>a2 chia 3 dư 1

=>a2-1 chia hết cho 3(2)

Từ (1) và (2) ta thây:

a2-1 chia hết cho 8 và 3

mà (8,3)=1

=>a2-1 chia hết cho 8.3

=>a2-1 chia hết cho 24

Vậy a2-1 chia hết cho 24

k cho mk nha\\\^-^

10 tháng 6 2018

P=3+2^2(2+1)+2^4(2+1)+2^6(2+1)

=3(1+2^2+2^4+2^6)

=>đpcm

4 tháng 11 2015

1)

+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)

+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)

+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2

      Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3  

            =>p+8 là hợp số (trái với giả thiết )

Vậy p phải có dạng là  3k+2

Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3

=>p+4 là hợp số (đpcm)

5 tháng 12 2015

Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó, p = 2k + 1 (k nguyên và k > 1) suy ra:

A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8.

kTa có: p = 3k + 1 hoặc 3k – 1 (h nguyên và k > 1) suy ra A chia hết cho 3.

Vậy A = (p – 1)(p + 1) chia hết cho 24

5 tháng 12 2015

http://olm.vn/hoi-dap/question/18848.html

Bạn vào đây tham khảo nhé !

14 tháng 4 2018

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

29 tháng 11 2015

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

29 tháng 11 2015

Ta thấy : Tich của 3 số tự nhiên liên tiếp là 1 số chia hết cho 3

Vì p-1 ; p ; p+1 là 3 số tự nhiên Liên tiếp

=> Trong 3 số trên luôn có 1 số chia hết cho 3

=> (p-1)(p+1) chia hết cho 3.      (1)

Vì p là số nguyên tố >3 => p là số lẻ

=> p-1 và p+1 là 2 số chẵn Liên tiếp

Mà tích của 2 số chămn Liên tiếp luôn chia  hết cho 8

=> (p-1)(p+1) chia hết cho 8.       (2)

Mà (3,8)=1

Từ (1) và (2) => (p-1)(p+1) chia hết cho (3.8) 

=> (p-1)(p+1) chia hết cho 24 (đpcm)

27 tháng 8 2018

Nếu p > 3 thì ta thử 5

Ta có:

( 52 - 1 ) = 25 - 1 = 24 chia hết cho 24

Đó là VD điiển hình

4 tháng 4 2016

a, Vì 2a+5*a+1 

Vì a+1*a+1 => 2(a+1)*a+1 => 2a+1*a+1

=> 2a+5-(2a+1)*a+1 => 2a+5-2a-1*a+1 => (2a-2a)+5-1*a+1

=> 4*a+1 => a+1 \(\in\) {-1;1;-4;4} => a \(\in\) {-2;0;-5;3}

b, Vì 264 chia a dư 24 => 264-24*a => 240*a

Vì 363 chia a dư 43 => 363-43*a => 320*a

=> \(a\inƯC\left(240;320\right)=\left\{2;4;5;8;20;10;40;80\right\}\)

2. Vì p nguyên tố > 3 => p có dạng là 3k+1 hoặc 3a+2

Nếu p = 3a+2 => p+4 = 3.a+2+4 = 3.a+6 chia hết cho 3 là hợp số (loại)

=> p = 3k+1 => p+8 = 3k+1+8 = 3k+9 chia hết cho 3 là hợp số

Vậy p+8 là hợp số (đpcm)

k nha bạn

4 tháng 4 2016

* là dấu chia hết nha bạn

7 tháng 4 2017

Vì p là số nguyên tố lớn hơn 3.

=>p lẻ.

=>p-1 và p+1 chẵn.

=>p-1 và p+1 là 2 số chẵn liên tiếp.

=>có 1 số chia hết cho 2 và 1 số chia hết cho 4.

=>tích chia hết cho 2*4=8.

Mà p là snt >3.

=>(p;3)=1.

=>p-1 chia hết cho 3 hoặc p+1 chuia hết cho 3.

=>(p-1)*(p+1) chia hết cho 3.

Mà (3;8)=1.

=>(p-1)*(p+1) chia hết cho 3*8=24.(đpcm)

29 tháng 12 2017

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24 (Đpcm)