K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 1 2019

Do a là nghiệm của pt nên

\(a^2-a-1=0\Leftrightarrow a^2=a+1\Leftrightarrow a^6=\left(a+1\right)^3=a^3+3a^2+3a+1\)

\(a^2-a-1=0\Leftrightarrow a^2-a=1\)

\(P=\dfrac{a^6-3a^3\left(a^2-a\right)-a^3+2018}{a^6-\left(a^3+3a^2+3a+1\right)+2020}=\dfrac{\left(a+1\right)^3-4a^3+2018}{\left(a+1\right)^3-\left(a+1\right)^3+2020}\)

\(P=\dfrac{-3a^3+3a^2+3a+2019}{2020}=\dfrac{-3a\left(a^2-a-1\right)+2019}{2020}=\dfrac{2019}{2020}\)

7 tháng 10 2021

\(Sửa đề a=1/(căn 3 của 3) -1 \)

22 tháng 8 2015

2) a) \(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)

b) \(x^2-6=\left(x-\sqrt{6}\right).\left(x+\sqrt{6}\right)\)

c) = \(x^2+2x.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)

d) = \(x^2-2x\sqrt{5}+\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)^2\)

20 tháng 6 2016

\(a,5\sqrt{4a^6}-3a^3=5\left|2a^3\right|-3a^2=-10a^3-3a^3=-13a^3\)(vì a<0)

b)\(\sqrt{9a^4}+3a^2=\left|3a^2\right|+3a^2=3a^2+3a^2=6a^2\)

c)\(\frac{\sqrt{x^2-10x+25}}{x-5}=\frac{\left|x-5\right|}{x-5}\)

Với x-5>0 => x>5 => \(\frac{\sqrt{x^2-10x+25}}{x-5}=1\)

Với x-5<0=>x<5 =>\(\frac{\sqrt{x^2-10x+25}}{x-5}=-1\)

17 tháng 12 2018

Bài này dễ mà bạn

17 tháng 12 2018

dễ thì bn giải hộ mk đi,nói đc lm đc nhỉ

30 tháng 11 2021

b: \(B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{x^2-9}=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

30 tháng 11 2021

b: \(B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

15 tháng 5 2018

dễ vãi :

\(4a^2-3a+\frac{1}{4a}+2018=4a^2-4a+1+a+\frac{1}{4a}+2017=\left(2a-1\right)^2+a+\frac{1}{4a}+2017\)

áp dụng BDT cosooossi 2 số ta có: \(a+\frac{1}{4a}\ge2\sqrt{a.\frac{1}{4a}}=2\sqrt{\frac{1}{4}}=2.\frac{1}{2}=1\)

\(\left(2a-1\right)^2\ge0\forall a\)

nên: \(\left(2a-1\right)^2+a+\frac{1}{4a}+2017\ge2018\forall a\)hay \(4a^2-3a+\frac{1}{4a}+2018\ge2018\forall a\)

dấu = xảy ra <=>\(a=\frac{1}{2}\)