Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Dang Thi Lien - Toán lớp 6 - Học toán với OnlineMath
\(a,A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
\(=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(=\frac{a^2+a-1}{a^2+a+1}\)
a ) Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
p<p+4 nguyen to => p<p+4 dang 3k +1
=>p+8 dang 3k+9
3k chia het cho 3
9 chia het cho 3
=> 3k +9 là hợp số =>p +8 là hợp số
câu a là 1 hàng đẳng thức bạn nhé
Vế trái = (a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2
b) p^2-1=(p-1)(p+1)
Do p>3 và p là SNT => p ko chia hết cho 3 => p chia 3 dư 1 hoặc 2
+ Nếu p:3 dư 1 thì p-1 chia hết cho 3
+ Nếu p:3 dư 2 thì p+1 chia hết cho 3
=> p^2-1 chia hết cho 3.
Do p>3, p NT=> p lẻ=> p=2k+1
Thay vào đc p^2-1=2k(2k+2)
=4k(k+1)
Do k và k+1 là 2 số tự nhiên liên tiếp => chia hết cho 2
=> 4k(k+1) chia hết cho 8=> p^2-1 chia hết cho 8
Tóm lại p^2-1 chia hết cho 24 do (3,8)=1
2) p^4-1=(p^2-1)(p^2+1)
Theo câu a thì p^2-1 chia hết cho 24
Do p lẻ (p là SNT >3)
=> p^2 cx lẻ => p^2+1 chẵn do 1 lẻ
=> p^2+1 chia hết cho 2
=> p^4-1 chia hết cho 48 (đpcm).