K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

A = |x+3| + |x-5|

A = |x+3| + |5-x| >= |x+3+5-x| = 8

Dấu "=" xảy ra <=> (x+3)(5-x) >=0

=> x >= -3; x <= 5 hoặc x<= -3;x>=5 (không xảy ra)

Vậy Min A = 8 khi -3<=x<=5

2 tháng 9 2019

   A=|x+3|+|x-5|

     =|x+3|+|5-x|> hoặc bằng |x+3+5-x|=8

    (Mình chỉ bt làm đến đây thôi, xin lỗi bạn nha!!!

15 tháng 12 2016

A = |x - 1| + |x + 5| + (x - 2)2 + 2017

A = |x - 1| + |x + 5| + |(x - 2)2| + 2017

A = |x - 1| + |x + 5| + |x2 + 4 - 4x| + 2017

Áp dụng bđt |a| + |b| + |c| \(\ge\)|a+b+c| ta có:

A = |x - 1| + |x + 5| + |x2 + 4 - 4x| + 2017 \(\ge\)|x - 1 + x + 5 + x2 + 4 - 4x| + 2017

A\(\ge\) |x2 - 2x + 8| + 2017

A \(\ge\) |x2 - x - x + 1 + 7| + 2017

A\(\ge\) |(x - 1)2 + 7| + 2017

A\(\ge\) (x - 1)2 + 2024

Dấu "=" xảy ra khi x - 1 \(\ge\)0; x + 5 \(\ge\)0

=> x \(\ge\)1; x \(\ge\)-5

=> x \(\ge\)1

Vậy GTNN của A là 2024 khi x = 1

16 tháng 12 2016

cảm ơn bạn

23 tháng 7 2020

Ta có \(\hept{\begin{cases}\left|x-1,5\right|\ge0\forall x\\\left|2x-3\right|\ge0\forall x\end{cases}}\Rightarrow\left|x-1,5\right|+\left|2x-3\right|-7\ge-7\forall x\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1,5=0\\2x-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1,5\\x=1,5\end{cases}}\Rightarrow x=1,5}\)

Vậy GTNN của A là - 7 khi x = 1,5

26 tháng 1 2015

4. A=7-x/x-5=(-(x-5)+2)/x-5=-1+2/x-5

A nhỏ nhất khi 2/x-5 nhỏ nhất.mà 2/x-5 nho nhất khi x-5 lớn nhất(a)

TH1: x-5>0=>x>5=>2/x-5>0(1)

Th2:x-5<0=>x<5=>2/x-5<0(2)

(1), (2)=>x-5<0(b)

(a),(b)=>x-5=-1=>x=4

vậy A nhỏ nhất là -3

 

9 tháng 4 2018

Ta có :  

\(\left|x-3\right|+2\ge2\)\(\Rightarrow\left(\left|x+3\right|+2\right)^2\ge4\)

\(\left|y+3\right|\ge0\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2017\ge4+0+2017\)

\(\Rightarrow P\ge2017\)

Dấu \("="\)\(\Leftrightarrow\)\(\hept{\begin{cases}\left(\left|x-3\right|+2\right)^2=4\\\left|y-3\right|=0\end{cases}}\)\(\)\(\hept{\begin{cases}\orbr{\begin{cases}\left|x-3\right|+2=2\\\left|x-3\right|+2=-2\end{cases}}\\y-3=0\end{cases}}\)

                     \(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}\left|x-3\right|+2=2\\\left|x-3\right|+2=-2\left(L\right)\end{cases}}\\y-3=0\end{cases}}\)