K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

Ta có:

\((ab+cd)^2=a^2b^2+c^2d^2+2abcd\)

\(=a^2b^2+c^2d^2-2abcd+4abcd\)

\(=(ab-cd)^2+4abcd\geq 4abcd=4\)

Vậy \((ab+cd)^2\geq 4\)

\(\Rightarrow ab+cd\geq \sqrt{4}=2\) (với \(ab+cd>0\))

Vậy......

26 tháng 5 2020

Ta có
a> 0 (với mọi a) [1]
b2 > 0 (với mọi b) [2]
từ [1] và [2] => a2+b2> 0

27 tháng 5 2020

a2+b2>labl mà

6 tháng 9 2017

a) 2.16 \(\ge\) 2n > 4

32 \(\ge\) 2n > 4

=> n = 3,4 . Tương đương với 2n = 23 ; 2n = 24

b) 9.27 \(\le\) 3n \(\le\) 243

243 \(\le\) 3n \(\le\) 243

=> 3n = 243 = 35 . Tương đương với 3n=35 , vậy n = 5

30 tháng 11 2018

a > 2; b > 2

=> ab > 2a (1)

a > 2; b  >2

=> ab > 2b   (2)

(1)(2) => ab + ab > 2a + 2b 

=> 2ab > 2(a + b)

=> ab > a + b

11 tháng 11 2019

Rồi m hỏi hay m show đáp án đây?? :v