K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 7 2020

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\([\sqrt{c(a-c)}+\sqrt{c(b-c)}]^2\leq [c+(b-c)][(a-c)+c]=ab\)

\(\Rightarrow \sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}\) (đpcm)

Dấu "=" xảy ra khi $a=b=2c$

10 tháng 8 2017

hi kết bạn nha

Giỏi thế em :v Mới lớp 8 mà đã đỉnh vậy ._.

4 tháng 8 2020

Ta có BĐT: \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\).

BĐT trên dễ dàng chứng minh được bằng cách sử dụng phép biến đổi tương đương.

Do đó: \(\left(\sum\sqrt{a^2+2bc}\right)^2\le3\left(\sum a^2+2\sum bc\right)=3\left(a+b+c\right)^2\)

\(\Rightarrow\sum\sqrt{a^2+2bc}\le\sqrt{3}\left(a+b+c\right)\)

28 tháng 7 2020

Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)

⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2

⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự

⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y

⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0

(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)

dấu = ⇔x=y=z⇔a=b=c

Mai Anh ! cậu giỏi quá, cậu nè :33 

18 tháng 5 2020

cái đoạn từ trên ta có s k viết kiểu kia lun đi limdim

18 tháng 5 2020

Đỗ Hải Đăng Lười =)))) Mất công cop mã LaTeX

25 tháng 4 2018

Bđt cần CM tương đương với: 

\(\left(\sqrt{a^2+15bc}+\sqrt{b^2+15ca}+\sqrt{c^2+15ab}\right)^2\le3\left[a^2+b^2+c^2+15\left(ab+bc+ca\right)\right]\)

Ta cần cm \(3\left[a^2+b^2+c^2+15\left(ab+bc+ca\right)\right]\le16\left(a+b+c\right)^2\)

Rút gọn ta đc \(ab+bc+ca\le a^2+b^2+c^2\)

Bđt sau cùng đúng

Ta đc đpcm

NV
20 tháng 6 2019

a/ Bình phương 2 vế:

\(\frac{a+2\sqrt{ab}+b}{4}\le\frac{a+b}{2}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ Bình phương:

\(a^2+b^2+c^2+d^2+2\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge a^2+b^2+c^2+d^2+2ac+2bd\)

\(\Leftrightarrow\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge ac+bd\)

\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

\(\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)