\(\dfrac{1}{a^2+b^2}+\dfrac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

Đầu tiên ta chứng minh bđt:\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Áp dụng \(\Rightarrow P=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\ge\dfrac{4}{a^2+b^2+2ab}=\dfrac{4}{\left(a+b\right)^2}\ge\dfrac{4}{4^2}=\dfrac{1}{4}\)

\(\Rightarrow MINP=\dfrac{1}{4}\Leftrightarrow a=b=2\)

16 tháng 4 2017

Áp dụng BĐT Bunhiacopxki,ta có:

\(\left(1+\dfrac{1}{a^2}\right)+\left(1+\dfrac{1}{b^2}\right)\)\(\geq\) \(\dfrac{\left(1+1+\dfrac{1}{a}+\dfrac{1}{b}\right)^2}{2}\)\(\geq\) \(\dfrac{\left(1+1+\dfrac{4}{a+b}\right)^2}{2}\) = \(\dfrac{\left(2+4\right)^2}{2}\) =18

Từ đó suy ra: \(\left(1+\dfrac{1}{a^2}\right)+\left(1+\dfrac{1}{b^2}\right)\)\(\geq\) 18

Dấu = xảy ra khi a=b= \(\dfrac{1}{2}\)

Vậy MinM = 18 khi và chỉ khi a=b=\(\dfrac{1}{2}\)

15 tháng 4 2017

ủa trước khi đăng câu hỏi nó ko hiện cái bảng có n~ Câu hỏi tương tự à? Vào tìm hộ cái

AH
Akai Haruma
Giáo viên
6 tháng 3 2019

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)(a^2+b^2+2ab)\geq (1+1)^2\)

\(\Leftrightarrow P(a+b)^2\geq 4\Rightarrow P\geq \frac{4}{(a+b)^2}\)

\(0< a+b\leq 4\Rightarrow (a+b)^2\leq 16\)

\(\Rightarrow P\geq \frac{4}{(a+b)^2}\geq \frac{4}{16}=\frac{1}{4}\)

Vậy GTNN của $P$ là $\frac{1}{4}$ khi $a=b=2$

28 tháng 11 2022

Bài 1:

a^2-5ab-6b^2=0

=>a^2-6ab+ab-6b^2=0

=>a*(a-6b)+b(a-6b)=0

=>(a-6b)(a+b)=0

=>a=-b hoặc a=6b

TH1: a=-b

\(A=\dfrac{-2b-b}{-3b-b}+\dfrac{5b+b}{-3b+b}=\dfrac{-3}{-4}+\dfrac{6}{-2}=\dfrac{3}{4}-3=-\dfrac{9}{4}\)

TH2: a=6b

\(A=\dfrac{12b-b}{18b-b}+\dfrac{5b-6b}{18b+b}=\dfrac{11}{17}+\dfrac{-1}{19}=\dfrac{192}{323}\)

18 tháng 8 2019

Cauchy Schwars 

\(M\ge\frac{\left(1+1+1\right)^2}{\left(a+b+c\right)^2}=\frac{9}{\left(a+b+c\right)^2}\ge9\Rightarrow M_{min}=9\Leftrightarrow a=b=c=\frac{1}{3}\)

18 tháng 8 2019

\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)

Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)

Vay \(M_{min}=9\)

2 tháng 12 2017

Bài 3:

\(\dfrac{a}{b}=\dfrac{3}{10}\)

=>3a=10b

=>\(a=\dfrac{10b}{3}\)

Do đó:\(B=\dfrac{4a\left(4a-10b\right)}{4a\left(2a-6b\right)}=\dfrac{a+3a-10b}{\dfrac{2.10b-18b}{3}}=\dfrac{a}{\dfrac{2}{3}b}=\dfrac{3a}{2b}\)

\(=\dfrac{\dfrac{3.10b}{3}}{2b}=\dfrac{10b}{2b}=5\)

2 tháng 12 2017

bài 3 : a, cho \(3a^2+3b^2=10ab\) và b>a>0. tính gt biểu thức A= \(\dfrac{a-b}{a+b}\)

\(3a^2+3b^2=10ab\)

\(\Rightarrow3a^2-10ab+3b^2=0\)

\(\Rightarrow3a^2-9ab-ab+3b^2=0\)

\(\Rightarrow\left(3a^2-9ab\right)-\left(ab-3b^2\right)=0\)

\(\Rightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)

\(\Rightarrow\left(a-3b\right)\left(3a-b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a-3b=0\\3a-b=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=3b\left(loai\right)\\a=\dfrac{b}{3}\end{matrix}\right.\)

a= 3b loại vì b > a > 0

Thay \(a=\dfrac{b}{3}\) vào biểu thức A ,có :

\(\dfrac{\dfrac{b}{3}-b}{\dfrac{b}{3}+b}=\dfrac{\dfrac{b-3b}{3}}{\dfrac{b+3b}{3}}=\dfrac{b-3b}{3}.\dfrac{3}{b+3b}=\dfrac{-2b}{4b}=-\dfrac{1}{2}\)

Vậy A =-1/2

b, tương tự tìm a theo b rồi thay vào biểu thức

Nếu bn ko lm đc thì bảo mk nha

26 tháng 1 2018

Áp dụng bất đẳng thức Cauchy-Schwarz ta có:

\(P=\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

10 tháng 4 2017

a/ Áp dụng cosi được:

\(A=ad+bc\ge2\sqrt{abcd}=2\)

Vậy GTNN là A = 2

b/ \(B=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right).\dfrac{9}{a+b+c}=9\)

16 tháng 3 2018

bạn ơi phần b sao lại ra như thế được? vẫn cosi hay j khác vậy Hung nguyen...

hum

9 tháng 12 2018

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)

\(A=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3-3x}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x^3-x^2+x-3-3x+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{1}{x^3+1}\)

Đầu tiên ta cm:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(tự cm)

Áp dụng:\(\Rightarrow\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}\)

Lại có:\(a^2+b^2+c^2+2ab+2bc+2ca=\left(a+b+c\right)^2\le1\)

\(\Rightarrow\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}\ge\dfrac{9}{1}=9\)

\(\Rightarrowđpcm\)