\(\ne\)b. Rút gọn :

S=\(\frac{\left(\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

\(S=\frac{\left[\frac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right]^3+2a\sqrt{a}+b\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(S=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2\left(\sqrt{a}\right)^2\sqrt{a}+\left(\sqrt{b}\right)^2\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{b}-\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(S=\frac{\left(\sqrt{a}\right)^3-3\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{b}\right)^3+2\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{3a^2+3b\sqrt{ab}}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{3\left(\sqrt{a}\right)^3-3a\sqrt{b}+3\sqrt{a}b}{3a^2+3b\sqrt{ab}}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{\sqrt{a}\left(a-\sqrt{ab}+b\right)}{\sqrt{a}\left[\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3\right]}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{\sqrt{a}+\sqrt{b}}\)

\(S=\frac{1}{\sqrt{a}+\sqrt{b}}-\frac{1}{\sqrt{a}+\sqrt{b}}=0\)

29 tháng 6 2019

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(=\frac{\sqrt{a^3}-3a\sqrt{b}+3\sqrt{a}.b-\sqrt{b^3}+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(=\frac{3\sqrt{a^3}-3a\sqrt{b}+3b\sqrt{a}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)

\(=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{\sqrt{a}+\sqrt{b}}=0\)

Ta có: \(A=\left(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{a}{b-a}\right):\left(\frac{a}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{a}}{a+b+2\sqrt{ab}}\right)\)

\(=\left(\frac{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{a}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right):\left(\frac{a\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)^2}-\frac{a\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)^2}\right)\)

\(=\frac{a-\sqrt{ab}-a}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}:\frac{a\sqrt{a}+a\sqrt{b}-a\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)

\(=\frac{-\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\cdot\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{a\sqrt{b}}\)

\(=\frac{-\sqrt{a}\cdot\sqrt{b}}{\sqrt{a}-\sqrt{b}}\cdot\frac{\sqrt{a}+\sqrt{b}}{\left(\sqrt{a}\right)^2\cdot\sqrt{b}}\)

\(=\frac{-\sqrt{a}-\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}\)

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

1. Ta thấy:

\(\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}=\frac{(\sqrt{a}-\sqrt{b})^3(\sqrt{a}+\sqrt{b})^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}\)

\(=(\sqrt{a}+\sqrt{b})^3-b\sqrt{b}+2a\sqrt{a}=a\sqrt{a}+b\sqrt{b}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})-b\sqrt{b}+2a\sqrt{a}\)

\(=3a\sqrt{a}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})=3\sqrt{a}(a+\sqrt{ab}+b)\)

$a\sqrt{a}-b\sqrt{b}=(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)$

\(\frac{\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}=\frac{3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(1)\)

\(\frac{3a+3\sqrt{ab}}{b-a}=\frac{3\sqrt{a}(\sqrt{a}+\sqrt{b})}{(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a})}=\frac{-3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(2)\)

Từ $(1);(2)$ ta có đpcm.

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Câu 2:

Điều kiện đã cho tương đương với:

$\frac{a-b}{a(a+b)}+\frac{a+b}{a(a-b)}=\frac{3a-b}{(a-b)(a+b)}$

$\Leftrightarrow \frac{(a-b)^2}{a(a+b)(a-b)}+\frac{(a+b)^2}{a(a-b)(a+b)}=\frac{a(3a-b)}{a(a-b)(a+b)}$

$\Leftrightarrow (a-b)^2+(a+b)^2=a(3a-b)$

$\Leftrightarrow 2a^2+2b^2=3a^2-ab$

$\Leftrightarrow a^2-ab-2b^2=0$

$\Leftrightarrow (a+b)(a-2b)=0$

$\Leftrightarrow a=-b$ hoặc $a=2b$

Nếu $a=-b$ thì $|a|=|b|$ (trái giả thiết). Do đó $a=2b$

Khi đó:

$P=\frac{(2b)^3+2(2b)^2.b+3b^3}{2(2b)^3+2b.b^2+b^3}=\frac{19b^3}{19b^3}=1$

NV
26 tháng 9 2019

\(P=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\left(\frac{a+b}{a-b}-\frac{\sqrt{b}}{\sqrt{b}-\sqrt{a}}+\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}\right)-\frac{\left|\sqrt{a}-\sqrt{b}\right|}{2}\)

\(P=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\left(\frac{a+b}{a-b}+\frac{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{a-b}+\frac{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{a-b}\right)-\frac{\left|\sqrt{a}-\sqrt{b}\right|}{2}\)

\(P=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\left(\frac{a+b+\sqrt{ab}+b+a-\sqrt{ab}}{a-b}\right)-\frac{\left|\sqrt{a}-\sqrt{b}\right|}{2}\)

\(P=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\left(\frac{2\left(a+b\right)}{a-b}\right)-\frac{\left|\sqrt{a}-\sqrt{b}\right|}{2}\)

\(P=\frac{\sqrt{a}-\sqrt{b}}{2}-\frac{\left|\sqrt{a}-\sqrt{b}\right|}{2}\)

TH1: \(a>b\Rightarrow P=\frac{\sqrt{a}-\sqrt{b}}{2}-\frac{\sqrt{a}-\sqrt{b}}{2}=0\)

TH2: \(0< a< b\Rightarrow P=\frac{\sqrt{a}-\sqrt{b}}{2}-\frac{\sqrt{b}-\sqrt{a}}{2}=\sqrt{a}-\sqrt{b}\)