K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

x=ab=[36−(a−b)2]:6≤6 do (a−b)2≥0x=6 khi và chỉ khi a=b=6 hoặc a=b=−6.
Vậy giá trị lớn nhất của x bằng 6 khi và chỉ khi a=b= \(\sqrt{6}\)hoặc a=b=\(-\sqrt{6}\).

25 tháng 3 2017

Ngoài cách đó bạn còn có thể làm như sau :

Ta có: (a-b)2 + 6ab = 36

\(\Rightarrow\)6a=36b-(a-b)2\(\le\) 36+0\(\Rightarrow\) ab\(\le\)\(\dfrac{36}{6}=6\)

\(\Rightarrow\) Giá trị lớn nhất của: x=ab là 6

Dấu "=" chỉ xảy ra khi : \(a=b=\sqrt{6}\) hoặc \(a=b=-\sqrt{6}\)

27 tháng 3 2017

Ta có:

\(\left(a-b\right)^2+6ab=36\)

\(\Rightarrow6ab=36-\left(a-b\right)^2\le36+0\)

\(\Rightarrow ab\le\dfrac{36}{6}=6\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{matrix}\right.\)

Vậy \(MAX_{x=ab}=6\)

19 tháng 5 2018

=> 6ab = 36 - ( a - b ) ^2 < 36 + 0 => ab < 36/6

=> GTLN của x = ab là 6

Dấu " = " xảy ra khi a=b = \(\sqrt{6}\)hoặc a = b = -\(\sqrt{6}\)

K mk nha <3

15 tháng 8 2015

=> 6ab = 36 - (a - b)2 \(\le\) 36 + 0 => ab \(\le\) 36/6 = 6

=> GTLN của x = ab là 6

Dấu "=" xảy ra khi a = b = \(\sqrt{6}\) hoặc a = b = - \(\sqrt{6}\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)

\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)

\(\Rightarrow A_{max}=\frac{3}{4}\)

b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4}\)

Để A max

=>(x+2)^2+4 min

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)

Vậy Min = 4 <=>x=-2

Vậy Max A = 3/4 <=> x=-2

\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow B\ge0+0+1=1\)

Vậy MinB = 1<=>x=-1;y=-3

3 tháng 7 2018

Bài 1:

a) \(A=\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)

\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy \(A_{min}=-1\Leftrightarrow x=2\)

b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)

Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)

\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)

Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)

Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)

Ta có:  \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)

\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)

\(\Rightarrow\) C không có giá trị lớn nhất

Vậy C không có giá trị lớn nhất

d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)

Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)

\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)

Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)

3 tháng 7 2018

B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)

\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2

b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)

\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)

B2:

a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)

\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2

b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)

\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)

18 tháng 9 2016

1/ Do ( x-7)2 >= 0 với mọi x => A= (x-7)2 + 1 >= 1 với mọi x

Dấu " = " xảy ra khi (x-7)2 = 0 => x-7=0 => x=7

Vậy minA= 1 tại x=7

17 tháng 2 2019

Bài 1:

       a) Ta có: 2x + 2x+3 = 144

                      2x.(1+23) = 144

                              2x.9 = 144

                                 2x = 16       

                                   x = 4

24 tháng 2 2019

1.b) Do VP > 0 nên VT > 0.

Suy ra \(3x+1+3+5=144\Leftrightarrow3x=135\Leftrightarrow x=45\)