Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy cho 3 số:
\(3\sqrt[3]{\left(1-a^2\right)\left(1-a^2\right)2a^2}\le\left(1-a^2\right)+\left(1-a^2\right)+2a^2\)
\(\Leftrightarrow\left(1-a^2\right)\left(1-a^2\right)2a^2\le\left(\frac{\left(1-a^2\right)+\left(1-a^2\right)+2a^2}{3}\right)^3=\left(\frac{2}{3}\right)^3=\frac{8}{27}\)
\(\Leftrightarrow\left(1-a^2\right)^2a^2\le\frac{4}{27}\Rightarrow\left(1-a^2\right)a\le\frac{2}{3\sqrt{3}}\Leftrightarrow\frac{a}{1-a^2}\ge\frac{3\sqrt{3}a^2}{2}\)
Tương tự rồi cộng hai vế, ta có:
\(VT\ge\frac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\frac{3\sqrt{3}}{2}\)
Dấu = <=> \(a=b=c=\frac{1}{\sqrt{3}}\)
Ta co:
\(\sqrt{2\left(b+1\right)}\le\frac{b+3}{2}\Rightarrow\frac{a}{\sqrt{2\left(b+1\right)}}\ge\frac{2a}{b+3}\)
Tuong tu:\(\frac{b}{\sqrt{2\left(c+1\right)}}\ge\frac{2b}{c+3};\frac{c}{\sqrt{2\left(a+1\right)}}\ge\frac{2c}{a+3}\)
\(\Rightarrow\frac{1}{\sqrt{2}}\left(\frac{a}{\sqrt{b+1}}+\frac{b}{\sqrt{c+1}}+\frac{c}{\sqrt{a+1}}\right)\ge2\left(\frac{a}{b+3}+\frac{b}{c+3}+\frac{c}{a+3}\right)\)
\(\frac{a}{b+3}+\frac{b}{c+3}+\frac{c}{a+3}\)
\(=\frac{a^2}{ab+3a}+\frac{b^2}{bc+3b}+\frac{c^2}{ca+3c}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca+9}\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+9}=\frac{9}{\frac{9}{3}+9}=\frac{3}{4}\)
\(\Rightarrow2\left(\frac{a}{b+3}+\frac{b}{c+3}+\frac{c}{a+3}\right)\ge\frac{3}{2}\)
Hay \(\frac{a}{\sqrt{b+1}}+\frac{b}{\sqrt{c+1}}+\frac{c}{\sqrt{a+1}}\ge\frac{3\sqrt{2}}{2}\)
Dau '=' xay ra khi \(a=b=c=3\)
Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập springtime ấy
Cho mk k nhé!
4/1x3x5 = 1/1x3 - 1/3x5
4/3x5x7 = 1/3x5 - 1/5x7
.............
A = 1/1x3 - 1/11x13
1/1x3x5 = 1/4 x (1/1x3 - 1/3x5)
1/3x5x7 = 1/4 x (1/3x5 - 1/5x7)
..........
B = 1/4 x (1/1x3 - 1/11x13)
Đặt \(\hept{\begin{cases}\sqrt{a^2+b^2}=x\\\sqrt{b^2+c^2}=y\\\sqrt{c^2+a^2}=z\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x,y,z>0\\x+y+z=1\end{cases}}\)
Và \(\hept{\begin{cases}a^2=\frac{x^2+z^2-y^2}{2}\\b^2=\frac{x^2+y^2-z^2}{2}\\c^2=\frac{y^2+z^2-x^2}{2}\end{cases}}\) và \(\hept{\begin{cases}b+c\le\sqrt{2\left(b^2+c^2\right)}=\sqrt{2}y\\a+b\le\sqrt{2}x\\c+a\le\sqrt{2}z\end{cases}}\)
\(\Rightarrow VT\ge\frac{1}{2\sqrt{2}}\left(\frac{x^2+z^2-y^2}{y}+\frac{x^2+y^2-z^2}{2z}+\frac{y^2+z^2-x^2}{x}\right)\)
\(\ge\frac{1}{2\sqrt{2}}\left(\frac{2\left(x+y+z\right)^2}{x+y+z}-\left(x+y+z\right)\right)\)
\(=\frac{1}{2\sqrt{2}}\left(x+y+z\right)=\frac{1}{2\sqrt{2}}\)
\(\frac{a}{b^2+1}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}\ge a-\frac{ab}{2}\) (AM-GM)
chung minh tuong tu ta co
\(VT\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ac}{2}\ge3-\frac{\left(a+b+c\right)^2}{6}\ge3-\frac{3}{2}=\frac{3}{2}\)
dau = xay ra khi a=b=c=1