K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)


\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Hay \(A>B\)

28 tháng 3 2017

Bằng \(-\frac{2}{11}\)

17 tháng 1 2017

\(\frac{2015}{2016}+\frac{2016}{2017}>\frac{\left(2015+2016\right)}{\left(2016+2017\right)}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)

1 tháng 3 2017

ko bit

25 tháng 4 2018

A<B(2015/2016<2015;2016/2017<2016;2017/2018<2017)

4 tháng 6 2016
  • \(A=\frac{2015}{2016}+\frac{2016}{2017}>1;\)
  • \(B=\frac{2015+2016}{2016+2017}< 1\)
  • Nên A>B
4 tháng 6 2016

Bạn Linh lẽ ra phải chứng minh như vầy đã chứ A=2015/2016  +  2016/2017=( 1 - 1/2016) + ( 1 - 1/2017)= 2 - 1/2016 - 1/2017 > 1