K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

a) \(\left(2x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x+2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)

b) \(\left(2x-3\right)\left(x+2\right)>0\)

\(\Rightarrow\orbr{\begin{cases}2x-3>0;x+2>0\\2x-3< 0;x+2< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x>\frac{3}{2}\\x< -2\end{cases}}\)

Vậy \(\orbr{\begin{cases}x>\frac{3}{2}\\x< -2\end{cases}}\)

c) \(\left(2x-3\right)\left(x+2\right)< 0\)

\(\Rightarrow\begin{cases}2x-3>0;x+2< 0\\2x-3< 0;x+2>0\end{cases}\)

\(\Rightarrow\orbr{\begin{cases}x>\frac{3}{2};x< -2\left(\text{vô lý}\right)\\\frac{3}{2}>x>-2\end{cases}}\)

Vậy \(\frac{3}{2}>x>-2\)

12 tháng 7 2016

a, A = (2x - 3)(x + 2) = 0

<=> (2x - 3) = 0 hoặc (x + 2) = 0

<=> 2x = 3 hoặc x = -2

<=> x = 3/2 hoặc x = -2

b, A = (2x - 3)(x + 2) > 0

<=> (2x -3) và (x + 2) cùng dấu

 - TH1: 2x - 3 > 0 và x + 2 > 0

=> 2x > 3 và x > -2

=> x > 3/2 và x > - 2

Vậy x > 3/2

 - TH2: 2x - 3 < 0 và x + 2 < 0

=> 2x < 3 và x < -2

=> x < 3/2 và x < -2

Vậy x < -2

c, A = (2x - 3)(x + 2) < 0

<=> (2x - 3) và (x + 2) trái dấu

 - TH1: 2x - 3 < 0 và x + 2 > 0

=> 2x < 3 và x > -2

=> x < 3/2 và x > -2

=> -2 < x < 3/2

 - TH2: 2x - 3 > 0 và x + 2 < 0

=> 2x > 3 và x < -2

=> x > 3/2 và x < -2 (vô lí)

Vậy -2 < x < 3/2

7 tháng 11 2015

a) A=x(x-2) 

Để A>0

TH1:  x>0 và x-2 < 0 ==> 0<x<2

TH2: x< 0 và x-2 >0 ===> Không có giá trị nào của x thỏa mãn;

Vậy : Để A< 0 thì 0<x<2

Để A lớn hơn hoặc bằng 0 thì :

TH1: x >=0 và x-2>=0 ===> x>=2

TH2 : x<=0 và x-2<=2 ===> x<=2

như vậy, để A lớn hơn hoặc bằng 0 thì x>=2 hoặc x<=2

6 tháng 11 2015

để A = x.(x-2) >=0 thi

TH1

x< hoac bang 0               =>x nho hon hoc bang 2

x-2< hoac bang => x<2   =>x nho hon hoc bang 2

TH2

x> hoac bang 0

x-2> hoac bang 0 => xon hon hoac bang 2

                         Vay x lon hon hoac bang 2 hoac nho hon hoac bang 2

                                                                                                                 By Tuấn

8 tháng 8 2024

Bài 1

A = \(x\)(\(x-2\))

\(x=0\)\(x-2\) = 0 ⇒ \(x=2\)

Lập bảng ta có:

\(x\)      -   0             +                   2        +
\(x-2\)     -                    -                   0       +
A =\(x\left(x-2\right)\)      +  0             -                    0         +

Để A ≥ 0 thì  \(x\) ≥ 0 hoặc \(x\ge\) 2

Để A < 0  thì   0 < \(x\) < 2 

 

8 tháng 8 2024

Bài 1

b; \(\dfrac{-x+2}{3-x}\)   

    - \(x\) + 2 = 0 ⇒ \(x=2\)

      3 - \(x=0\) ⇒ \(x=3\)

Lập bảng:

\(x\)               2                                   3
-\(x+2\)        +     0     -                                  - 
3 - \(x\)        +           +                            0    -
A = \(\dfrac{-x+2}{3-x}\)        +            -                                  +

B > 0 ⇔   \(x< 2\) hoặc \(x>3\)

B < 0 ⇔ 2 < \(x\) < 3

  

    

21 tháng 9 2019

Điều kiện x ≠ -5

a, Để A > 0

Th1: \(\hept{\begin{cases}2x-4< 0\\x+5< 0\end{cases}\Rightarrow}\hept{\begin{cases}2x< 4\\x< -5\end{cases}}\Rightarrow\hept{\begin{cases}x< 2\\x< -5\end{cases}}\Rightarrow x< -5\)

Th2: \(\hept{\begin{cases}2x-4>0\\x+5>0\end{cases}\Rightarrow}\hept{\begin{cases}2x>4\\x>-5\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\x>-5\end{cases}\Rightarrow}x>2\)

b, Để A < 0

Th1:\(\hept{\begin{cases}2x-4>0\\x+5< 0\end{cases}\Rightarrow}\hept{\begin{cases}2x>4\\x< -5\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\x< -5\end{cases}}\)(Vô lý)

Th2: \(\hept{\begin{cases}2x-4< 0\\x+5>0\end{cases}\Rightarrow}\hept{\begin{cases}2x< 4\\x>-5\end{cases}\Rightarrow}\hept{\begin{cases}x< 2\\x>-5\end{cases}\Rightarrow}-5< x< 2\)

c, Để A = 0

<=> 2x - 4 = 0

<=> 2x = 4

<=> x = 2

8 tháng 11 2016

A=0 => TH1: x+2=0     Th2: -x-3=0 

                    x= -2               x=-3

A>0 c/m tg tự: TH1 x+2<0 và -x-3<0

                       TH2 x+2>0 và -x-3>0

A<0 

c/m tg tự: TH1 x+2>0 và -x-3<0

                       TH2 x+2<0 và -x-3>0

                       

8 tháng 9 2017

a, \(\left(x-3\right)\left(x-2\right)< 0\)

\(x\in R\) nên \(x-3< x-2\) nên:

\(\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)

Vậy....................

b, Giống câu a.

c, \(\left(x+3\right)\left(x-4\right)>0\)

\(\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x>-3\\x>4\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3\\x< 4\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>4\\x< -3\end{matrix}\right.\)

Vậy.............

d, Giống câu c

e, Dạng giống câu a

Chúc bạn học tốt!!!

a)\(\left(x-3\right)\left(x-2\right)< 0\)

\(\left(x-3\right)\left(x-2\right)< 0\) nên phải có 1 số âm và 1 số dương

\(x-3< x-2\)

Nên ta có:

\(x-3< 0\)=>\(x< 3\)

\(x-2>0\)=>\(x>2\)

Do đó:\(2< x< 3\)

Vậy \(2< x< 3\)

Các câu sau tương tự