K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

bằng 2 nha bạn hải nam

9 tháng 12 2018

gải ra hộ tớ

16 tháng 12 2019

Ta có: \(A=4^0+4^1+4^2+...+4^{20}\)

Nhân A với 4 ta có:

\(4A=4\left(4^0+4^1+4^2+...+4^{20}\right)\)

=> \(4A-A=\left(4^1+4^2+4^3+...+4^{21}\right)-\left(4^0+4^1+4^2+...+4^{20}\right)\)

=> \(A\left(4-1\right)=4^{21}-4^0\)

=> \(3A=4^{21}-1\)

=> \(3A+1=4^{21}=\left(4^3\right)^7=64^7>63^7\)

Vậy 3A + 1 > 63^7.

AH
Akai Haruma
Giáo viên
19 tháng 7 2024

Lời giải:

$A=1+4+4^2+4^3+....+4^{23}$

$4A=4+4^2+4^3+4^4+...+4^{24}$

$\Rightarrow 4A-A=4^{24}-1$

$\Rightarrow 3A+1=4^{24}=(4^3)^8=64^8> 63^7$

17 tháng 12 2015

4A =4 +42+43 +....+424

3A =4A-A =424 -1

=>3A + 1 = 424 = 64> 637

Vậy 3A +1 > 637