Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR :1,a2+b2=<a+b>2-2ab
2,a3+b3=<a+b>3-3ab.<a+b>
3,a3-b3=<a-b>3+3ab.<a+b>
Cho :a+b=1
Tính :A=a3+b3+3ab
2
Ta có:
VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)
=a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)
=a3+b3=VT(dpcm)
1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)
Ta có: a+b=1(1)
=> (a+b)3=1
<=> \(a^3+3a^2b+3ab^2+b^3=1\)
<=> \(a^3+b^3+3ab\left(a+b\right)=1\)(2)
Từ (1)(2)=> \(a^3+b^3+3ab=1\)
<=> \(a^3+b^3=1-3ab\)(đpcm)
\(a^3+b^3=3ab-1\)
\(\Rightarrow a^3+b^3+1-3ab=0\)
\(\Rightarrow\left(a+b\right)^3+1-3ab\left(a+b\right)-3ab=0\)
\(\Rightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b\right)=0\)
\(\Rightarrow\left(a+b+1\right)\left(a^2-ab+b^2-a-b+1\right)=0\)
Mà \(a,b>0\Rightarrow a+b+1>0\)
\(\Rightarrow a^2-ab+b^2-a-b+1=0\)
\(\Rightarrow2a^2-2ab+2b^2-2a-2b+2=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Rightarrow a=b=1\Rightarrow a^{2018}+b^{2019}=1+1=2\)
1) \(\left(y+3\right)^3-\left(y-1\right)^3\)
=(y+3-y+1)\(\left[\left(y+3\right)^2+\left(y+3\right)\left(y-1\right)+\left(y-1\right)^2\right]\)
=4.(\(y^2+6y+9\)+\(y^2-y+3y-3\)+\(y^2-2y+1\))
=4(\(3y^2+6y+7\))
=\(12y^2+24y+28\)
3.
\(a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)
\(=1.\left(a^2+b^2-ab\right)\) (1)
Lại có : \(a^2+b^2=\left(a+b\right)^2-2ab=1-2ab\) thay vào (1) có :
\(a^3+b^3=1.\left(1-2ab-ab\right)\)
\(=1-3ab\left(đpcm\right)\)
Xét VP : \(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)
vậy VT=VP
=> \(a^3+b^3=\left(-5\right)^3-30.\left(-5\right)=25\)
Xét VP: \(\left(a-b\right)^3+3ab\left(a-b\right)=a^3-3a^2b+3ab^2-b^2+3a^2b-3ab^2=a^3-b^3\)
=> VT=VP
Ta có: \(a-b=1\Leftrightarrow\left(a-b\right)^3=1^3\)
\(\Leftrightarrow a^3-b^3-3ab\left(a-b\right)=1\)
\(\Leftrightarrow a^3-b^3-3ab=1\)
\(\Leftrightarrow a^3-b^3=1+3ab\) (như vầy mới đúng đề nha bn)
Vậy ...