Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = a2(a-1)-b2(b-1)+ab-3ab(a-b+1)
<=> a3 -a2 +b2-b3+ab -3a2b+3ab2-3ab
<=> (a3-3a2b+3ab2-b3)+(a2-2ab+b2)
<=> (a-b)3+(a-b)2
<=> 73+72 = 392 (Vì a-b=7)
Vậy A=392
nha ^^
\(A=a^3+a^2-b^3+b^2+ab-3a^2b+3ab^2-3ab=\left(a^3-b^3-3a^2b+3ab^2\right)+\left(a^2-2ab+b^2\right)=\left(a-b\right)^3+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(a-b+1\right)\)
phân tích thành nhân tử rồi đó. ngta cho a-b= bao nhiêu thì mới tính
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2+2ab-2ab\right)+6a^2b^2\left(a+b\right)\)
\(M=a^2+2ab+b^2-3ab+3ab-6a^2b^2+6a^2b^2\)
\(M=\left(a+b\right)^2=1\)
\(a^2+b^2=2\left(8+ab\right)\)
=> \(a^2-2ab+b^2=16\)
=> \(\left(a-b\right)^2=16\)
=> a - b = 4 hoặc a - b = -4
Mà a < b
=> a - b < 0
=> a - b = -4
=> a = - 4 + b
Khi đó
\(P=\left(b-4\right)^2\left(-4+b\right)-b^2\left(b-1\right)-3\left(-4+b\right)\left(-4+1\right)+64\)
\(=\left(b^2-8b+16\right)\left(-4+b\right)-b^3+1-9\left(b-4\right)+64\)
\(=-4b^2+32b-64+b^3-8b^2+16b-b^3+1-9b+36+64\)
\(=-12b^2+49b+37\)
Chịu rồi! tách được thì tách không tách được chắc sai :v
1/
\(A=a^3+a^2-b^3+b^2+ab-3a^2b+3ab^2-3ab\)
\(A=\left(a^3-3a^2b+3ab^2-b^3\right)+\left(a^2-2ab+b^2\right)=\left(a-b\right)^3+\left(a-b\right)^2=7^3+7^2=392\)
\(A=a^3-b^3+a^2+b^2-3ab\left(a-b\right)-3ab+ab\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2-3ab\left(a-b\right)\)
\(=\left(a-b\right)\left(a^2-2ab+b^2+3ab\right)+49-3ab\left(a-b\right)\)
\(=\left(a-b\right)^2+3ab\left(a-b\right)+49-3ab\left(a-b\right)\)
\(=49+49=98\)
\(2x^2+y^2+9=6x+2xy\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-3\right)^2=0\Leftrightarrow\hept{\begin{cases}x-3=0\\x-y=0\end{cases}}\Leftrightarrow x=y=3\)
\(\Rightarrow A=x^{2019}.y^{2020}-x^{2020}.y^{2019}+\frac{1}{9xy}=\frac{1}{27}\)
\(A=a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(a-b+1\right)\)
\(A=a^3+a^2-b^3+b^2+ab-3a^2b+3ab^2-3ab\)
\(A=\left(a^3-3a^2b+3ab^2-b^3\right)+\left(a^2-2ab+b^2\right)\)
\(A=\left(a-b\right)^3+\left(a-b\right)^2\)
Thay a - b = 1 vào A
\(A=1+1\)
\(A=2\)