Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này cần dùng một ít kiến thức của lớp 8, bạn có thể tìm hiểu thêm.
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
\(f\left(0\right)=a.0^2+b.0+c=c\)
\(f\left(1\right)=a.1^2+b.1+c=a+b+c\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)
Vì f(x) chia hết cho 3 với mọi x nên c;a+b+c;a-b+c đều chia hết cho 3
=>(a+b+c)-(a-b+c)=2b chia hết cho 3 mà ƯCLN(2;3)=1 => b chia hết cho 3
a+b+c chia hết cho 3, trong đó có b chia hết cho 3, c chia hết cho 3 => a chia hết cho 3
Vậy ...............