K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

Goi d la UCLN(a;ab+4) 
Ta co: 
+ a chia het cho d(1) 
+ ab+4 chia het cho d(2) 
Tu (1)=>ab chia het cho d(3) 
Tu (2) va (3) =>4 chia het cho d 
=>d thuoc tap hop cac uoc cua 4 
ma a la stnhien le =>d le 
=>d=1 
=>a va ab+4 nguyen to cung nhau

11 tháng 12 2017

Goi d la UCLN(a;ab+4) 
Ta co: 
+/a chia het cho d(1) 
+/ab+4 chia het cho d(2) 
Tu (1)=>ab chia het cho d(3) 
Tu (2) va (3) =>4 chia het cho d 
=>d thuoc tap hop cac uoc cua 4 
ma a la stnhien le =>d le 
=>d=1 
=>a va ab+4 nguyen to cung nhau

19 tháng 11 2017

Câu a)

Giả sử k là ước của 2n+1 và n 

Ta có 

\(2n+1⋮k\)

\(n⋮k\)

Suy ra 

\(2n+1⋮k\)

\(2n⋮k\)

Suy ra \(2n+1\)là số lẻ (với mọi giá trị n thuộc N)

Suy ra \(2n\)là số chẵn (với mọi giá trị n thuộc N)

Mà 2 số trên là 2 số tự nhiên liên tiếp

Suy ra \(2n+1\)và \(2n\)là 2 số nguyên tố cùng nhau

Vậy \(2n+1\)và \(n\)là 2 số nguyên tố cùng nhau (đpcm)

Câu b)

Vì n lẻ nên

(n-1) là số chẵn

(n+1) là số chẵn

(n+2) là số chẵn

(n+5) là số chẵn

Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn

Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)

Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384

Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3

Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384

Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)

Câu c)

Đang thinking .........................................

20 tháng 11 2017

LÊ NHẬT KHÔI ƠI BẠN LÀM CÓ ĐÚNG KO??? GIÚP MÌNH CÂU C VƠI NHA !!!

a, gọi ƯCLN(n,2n-1) là d (d thuộc N)

Ta có: n chia hết cho d 

=> 2n chia hết cho d 

2n-1 chia hết cho d 

=> 2n-1-2n chia hết cho d

=> 1 chia hết cho d 

=> d thuộc ước của 1

=> d=1 

=> n bà 2n+1 nguyên tố cùng nhau

6 tháng 10 2018

Mình cũng có câu hỏi giống bạn nè

2 tháng 2 2017

Giả sử a và ab +  4 cùng chia hết cho số tự nhiên d ( d khác 0 ) 

Như vậy thì ab chia hết cho d , do đó hiệu ( ab + 4 ) - ab = 4 cũng chia hết cho d

=> d = { 1 ; 2 ; 4 }

Nhưng đầu bài đã nói a là 1 số tự nhiên lẻ => a và ab + 4 là các số nguyên tố cùng nhau 

 Gọi k là ước số của a và ab+4 
Do a lẻ => k lẻ 
Ta có:

      ab+4=kp (1) 
      a=kq (2) 
Thay (2) vào (1) 
=> kqb+4 =kp 
=> k(p-qb)=4 
=> p-qb =4/k 
do p-qb nguyên => k là ước lẻ của 4 => k=1 
Vậy a và ab+4 nguyên tố cùng nhau

5 tháng 12 2016

mình giải rồi không thấy ý kiến gì?

7 tháng 12 2017

1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d  \(\in\) { 2; 4 }.  (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\)
Vì vậy d  = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.

 

13 tháng 2 2019

Bạn tìm trên mạng rồi vào câu hỏi của Messi ấy.

Có một bạn trả lời mà được Online Math lựa chọn luôn đó.