Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\frac{a^2+b^2}{a-2b}=2\Rightarrow a^2+b^2=2\left(a-2b\right)\)
\(\Leftrightarrow a^2+b^2=2a-4b\)
\(\Leftrightarrow a^2+b^2+4b=2a\)
\(\Leftrightarrow a.a+b.b+4b=2.a\)
\(\Leftrightarrow a.a+b\left(b+4\right)=2.a\)
\(\Leftrightarrow2.a-a.a=b\left(b+4\right)\)
\(\Leftrightarrow\frac{a}{b}=\frac{b+4}{2-a}\)
Mà muốn P lớn nhất thì a,b phải lớn nhất \(\Rightarrow a=b+4;b=2-a\)
\(\Leftrightarrow a+b=2\Leftrightarrow b+4+b=2\Leftrightarrow2b=-2\Rightarrow b=-1;a=3\)
\(\Rightarrow P=8a+4b=24-4=20\)
Ta có: \(b=0,25P-2a\) thế ngược lên trên ta được
\(\frac{a^2+\left(0,25P-2a\right)^2}{a-2\left(0,25P-2a\right)}=2\)
\(\Leftrightarrow80a^2-a\left(16P+160\right)+P^2+16P=0\)
Để PT có nghiệm thì:
\(\Delta'\ge0\)
Làm tiếp nhé
Bỏ số 2013 trong biểu thức cần tìm GTLN cho đơn giản!
\(\left(a-2\right)^2+\left(b-1\right)^2=545\)
Đặt \(a-2=x;\text{ }b-1=y\text{ }\Rightarrow x^2+y^2=545.\)
\(P=23\left(x+2\right)+4\left(y+1\right)+2013=23x+4y+50\)
Ta có: \(\left(A^2+B^2\right)\left(X^2+Y^2\right)-\left(AX+BY\right)^2=\left(AY-BX\right)^2\ge0\)
\(\Rightarrow\left(A^2+B^2\right)\left(X^2+Y^2\right)\ge\left(AX+BY\right)^2\)
Dấu bằng xảy ra khi \(AY-BX=0\Leftrightarrow AY=BX\)
Áp dụng: \(\left(23.x+4.y\right)^2\le\left(23^2+4^2\right)\left(x^2+y^2\right)=545.545=545^2\)
\(\Rightarrow23x+4y\le545\)
Dấu bằng xảy ra khi \(\int^{23y=4x}_{23x+4y=545}\Leftrightarrow\int^{x=23}_{y=4}\)
\(\Rightarrow maxP=545+50=595\)
Ta có \(ab+bc+ca=3abc\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) thì ta có \(x,y,z>0;x+y+z=3\) và
\(\sqrt{\dfrac{a}{3b^2c^2+abc}}=\sqrt{\dfrac{\dfrac{1}{x}}{3.\dfrac{1}{y^2z^2}+\dfrac{1}{xyz}}}=\sqrt{\dfrac{\dfrac{1}{x}}{\dfrac{3x+yz}{xy^2z^2}}}=\sqrt{\dfrac{y^2z^2}{3x+yz}}\) \(=\dfrac{yz}{\sqrt{3x+yz}}\) \(=\dfrac{yz}{\sqrt{x\left(x+y+z\right)+yz}}\) \(=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
Do đó \(T=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
Lại có \(\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}\)
Lập 2 BĐT tương tự rồi cộng theo vế, ta được \(T\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}+\dfrac{zx}{2\left(y+z\right)}+\dfrac{zx}{2\left(y+x\right)}\) \(+\dfrac{xy}{2\left(z+x\right)}+\dfrac{xy}{2\left(z+y\right)}\)
\(T\le\dfrac{yz+zx}{2\left(x+y\right)}+\dfrac{xy+zx}{2\left(y+z\right)}+\dfrac{xy+yz}{2\left(z+x\right)}\)
\(T\le\dfrac{x+y+z}{2}\) (do \(x+y+z=3\))
\(T\le\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\) \(\Leftrightarrow a=b=c=1\)
Vậy \(maxT=\dfrac{3}{2}\), xảy ra khi \(a=b=c=1\)
(Mình muốn gửi lời cảm ơn tới bạn Nguyễn Đức Trí vì ý tưởng của bài này chính là bài mình vừa hỏi lúc nãy trên diễn đàn. Cảm ơn bạn Trí rất nhiều vì đã giúp mình có được lời giải này.)
Bạn Lê Song Phương xem lại dùm nhé, thanks!
\(...\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\)
\(...\Rightarrow T\le2.3=6\)
\(\Rightarrow GTLN\left(T\right)=6\left(tạia=b=c=1\right)\)