Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(a+b+c\right)=a^2+b^2+c^2+3\)
\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}a-1=0\\b-1=0\\c-1=0\end{array}\right.\)\(\Leftrightarrow a=b=c=1\)
\(\left(a+b+c\right)^3\)
\(=\left[\left(a+b\right)+c\right]^3\)
\(VT=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3\)
\(=a^3+3ab\left(a+b\right)+b^2+3c\left(a+b\right)\left(a+b+c\right)+c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
=>đpcm
1) a2 +b2 +c2>= ab +bc +ca <=> 2a2 +2b2 +2c2 >=2ab +2bc +2ca <=> 2a2 +2b2 +2c2 -2ab -2bc -2ca >= 0
<=> (a -b)2 +(b -c)2 + (c -a)2 >= 0 (bđt đúng với mọi a, b, c)
2) Áp dụng bđt Cauchy với a, b, c > 0 ta có :
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc.ab}{ac}}=2b\)
tương tự : \(\frac{ab}{c}+\frac{ca}{b}\ge2a\); \(\frac{ca}{b}+\frac{bc}{a}\ge2c\)
Cộng từng vế 3 bđt trên suy ra đpcm
3) Từ gt a a +b =c => a +b -c =0 => (a +b -c)2 = 0 => a2 +b2 +c2 +2ab -2bc -2ca = 0
=> a2 +b2 +c2 = 2bc + 2ca -2ab => (a2 +b2 +c2)2 = (2bc +2ca -2ab)2
=> a4 +b4 +c4 +2a2b2 +2b2c2 +2c2a2 = 4b2c2 +4c2a2 +4a2b2 +4abc2-4a2bc - 4ab2c
=> a4 +b4 +c4 -2a2b2 -2b2c2 -2c2a2 = 4abc(c -a -b) = 4abc.0 =0
Vậy a4 +b4 +c4 = 2a2b2 +2b2c2 +2c2a2
Mọi người giúp mình bài nay với. Mai mình nộp bài mà mình lại học toán hơi kém tí. Thanhks trước.
Bài 1: cho a, b, c thuộc R.
Chứng minh a2 + b2 + c2 >= ab+ac+bc
Bài 2:cho a, b, c >0.
Chứng minh (bc/a)+(ac/b)+(ab/c)>= a+b+c
Bài 3: cho a, b, c thoả mãn a+b=c.
Chứng minh a4 +b4 +c4 =2a2b2 +2b2c2 + 2a2c2
2) b)
Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)
\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)
\(ab+bc+ac=-60:2=-30\)
a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)
= (x+y)^3
= 1^3 =1
b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac
9^2 = 141 +2(ab+bc+ac)
-60 = 2(ab+bc+ac)
ab+ac+bc=-30
Vậy M=-30
c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)
= x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3
= x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3
= 0
Vậy N=0 .Chúc bạn học tốt.
a) a2+b2+c2 = ab+bc+ca nhân 2 vào cả 2 vế, chuyển tất cả sang vế trái thành 3 HĐT=>đpcm
b) (a+b+c)2 = 3(a2+b2+c2) tách (a+b+c)2 thành a2+b2+c2+2ab+2bc+2ac, bỏ ngoặc vế phải, chuyển hết sang vế phaỉ tạo ra 3 HĐT=> dpcm
c) (a+b+c)2 = 3(ab+bc+ca) tách (a+b+c)2 thành a2+b2+c2+2ab+2bc+2ac, bỏ ngoặc vế phải, chuyển hết sang vế trái rồi làm như câu a
Hãy nhấn k nếu bạn thấy đây là câu tl đúng :)
1/ = ab-ac-ab-bc+ac-bc
= -2bc
2/ = a^3 +a.b^2 +a.c^2 -a^2 .b - a.b^2 -abc -a^2 .c +a^2 .b +b^3 +bc^2 -a.b^2 -b^2 .c -abc +a^2 .c +b^2 .c +c^3 -abc- b.c^2 -a.c^2
= a^3 +b^3 +c^3 -3abc
Bạn chỉ cần nhân ra thôi. Chúc bạn học tốt.