Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(\dfrac{a}{b}=\dfrac{3}{10}\)
=>3a=10b
=>\(a=\dfrac{10b}{3}\)
Do đó:\(B=\dfrac{4a\left(4a-10b\right)}{4a\left(2a-6b\right)}=\dfrac{a+3a-10b}{\dfrac{2.10b-18b}{3}}=\dfrac{a}{\dfrac{2}{3}b}=\dfrac{3a}{2b}\)
\(=\dfrac{\dfrac{3.10b}{3}}{2b}=\dfrac{10b}{2b}=5\)
bài 3 : a, cho \(3a^2+3b^2=10ab\) và b>a>0. tính gt biểu thức A= \(\dfrac{a-b}{a+b}\)
\(3a^2+3b^2=10ab\)
\(\Rightarrow3a^2-10ab+3b^2=0\)
\(\Rightarrow3a^2-9ab-ab+3b^2=0\)
\(\Rightarrow\left(3a^2-9ab\right)-\left(ab-3b^2\right)=0\)
\(\Rightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)
\(\Rightarrow\left(a-3b\right)\left(3a-b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-3b=0\\3a-b=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=3b\left(loai\right)\\a=\dfrac{b}{3}\end{matrix}\right.\)
a= 3b loại vì b > a > 0
Thay \(a=\dfrac{b}{3}\) vào biểu thức A ,có :
\(\dfrac{\dfrac{b}{3}-b}{\dfrac{b}{3}+b}=\dfrac{\dfrac{b-3b}{3}}{\dfrac{b+3b}{3}}=\dfrac{b-3b}{3}.\dfrac{3}{b+3b}=\dfrac{-2b}{4b}=-\dfrac{1}{2}\)
Vậy A =-1/2
b, tương tự tìm a theo b rồi thay vào biểu thức
Nếu bn ko lm đc thì bảo mk nha
Câu 1:
Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)
\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)
Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)
Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
5 , a3+b3+c3\(\ge\) 3abc
\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0
\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)
ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)
(a-b)2+(b-c)2+(c-a)2\(\ge0\)
<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)
<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)
Từ (1)(2)(3)=> pt luôn đúng
Bài 2:
a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)
\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)
\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)
\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)
Vì \(a+b+c=0\)
Nên a + b = -c (1)
Thay (1) vào A, ta được:
\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)
\(A=\dfrac{1}{abc}.3abc\)
\(A=3\)
b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)
Vì \(a+b+c=0\)
Nên b + c = -a
=> ( b + c )2 = (-a)2
=> b2 + c2 + 2bc = a2
=> b2 + c2 = a2 - 2bc (1)
Tương tự ta có: c2 + a2 = b2 - 2ac (2)
a2 + b2 = c - 2ab (3)
Thay (1), (2) và (3) vào B, ta được:
\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)
\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)
\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)
\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)
\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)
Mà \(a^3+b^3+c^3=3abc\) ( câu a )
\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)
\(\Rightarrow B=\dfrac{3}{2}\)
Bài 1:
a) GT: abc = 2
\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)
\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)
\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)
\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)
\(M=\dfrac{1+b+bc}{bc+b+1}\)
\(M=1\)
b) GT: abc = 1
\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)
\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)
\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)
\(N=\dfrac{1+b+bc}{bc+b+1}\)
\(N=1\)
5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
áp dụng bđ cosy
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
=> đpcm
6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
hay với mọi x thuộc R đều là nghiệm của bpt
7.áp dụng bđt cosy
\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)
a)\(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)
\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)
\(A=\dfrac{a^3+b^3+c^3}{abc}\)
\(A=\dfrac{3abc}{abc}=3\)(vì a+b+c=0)
b)Ta có: a+b+c=0
\(\Rightarrow\left\{{}\begin{matrix}a=-b-c\\b=-c-a\\c=-a-b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2=\left(b+c\right)^2\\b^2=\left(c+a\right)^2\\c^2=\left(a+b\right)^2\end{matrix}\right.\)
\(\Rightarrow B=\dfrac{a^2}{\left(b+c\right)^2-b^2-c^2}+\dfrac{b^2}{\left(a+c\right)^2-c^2-a^2}+\dfrac{c^2}{\left(a+b\right)^2-a^2-b^2}\)
\(\Rightarrow B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2ab}\)
\(\Rightarrow B=\dfrac{a^3+b^3+c^3}{2abc}\)
\(\Rightarrow B=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)(vì a+b+c=0)
cm:nếu a+b+c=0 thì a^3+b^3+c^3=3abc
a^3+b^3+c^3=3abc
=>a^3+b^3+c^3-3abc=0
=>(a+b)^3-3ab(a+b)+c^3-3abc=0
=>[(a+b)^3+c^3]-3ab(a+b+c)=0
=>(a+b+c)[(a+b)^2-(a+b)c+c^2] -3ab(a+b+c)=0
=>(a+b+c)[(a+b)^2-(a+b)c+c^2-3ab]=0
vì a+b+c=0 nên a^3+b^3+c^3=3abc
thay kết quả vừa chúng minh vào đề bài ta đc
\(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}=\dfrac{a^3+b^3+c^3}{abc}=\dfrac{3abc}{abc}=3\)
chúc bạn học tốt ^ ^
Bác google được sinh ra để làm gì, đăng nhiều vc, google có hết mà ;v
Bài 1,2,3,4 đơn giản, tự làm :v
7) \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}=\dfrac{abc}{c^3}+\dfrac{abc}{a^3}+\dfrac{abc}{b^3}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc.\dfrac{1}{3abc}=\dfrac{1}{3}\)
P/S: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
5) ĐK: a>b>0
\(3a^2+3b^2=10ab\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)
Tự phân tích
Mà a>b>0=> Chọn a=3b
Thay vào
Bài 6 tương tự bài 5
Có bất mãn chỗ nào thì ib nha bạn :))