K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

gtnn=4 dok pn k nka. đảm bảo đúg lun mjk vừa làm xog

13 tháng 3 2016

Bạn nhân hai biểu thức rồi dùng bất đẳng thức cô-si.suy ra min=4 

5 tháng 3 2016

câu 2 min là 2 đấy bạn

5 tháng 3 2016

Câu 1:

P=(x - 1)(x - 3)(x - 4)(x - 6) + 5

P=(x - 1)(x - 6)(x - 3)(x - 4) +5

P=(x^2 - 7x + 6)(x^2 - 7x + 12)+5

Dặt x^2 - 7x + 9 là a, ta có:

P=(a + 3)(a - 3)+5

P=a^2 - 4

=>Pmin= -4

Câu 2:

Q=(a + b)(1/a + 1/b)

Q=a/a + a/b + b/a + b/b

Q=2 + (a/b + b/a)

Gọi a/b là x, ta có:

(x - 1)^2 lớn hơn hoặc băng 0 =>x^2 - 2x + 1 lớn hơn hoặc băng 0

=>x^2 + 1 lớn hơn hoặc băng 2x => x(x + 1/x) lớn hơn hoặc băng 2x

=>x + 1/x lớn hơn hoặc băng 2 =>Min x + 1/x = 2

Có: a/b+b/a = x + 1/x

=>Qmin=2 + 2=4

Mình giải câu 2 hơi dài dòng bạn thông cảm nha. Cảm ơn!

Câu 1:Cho biểu thức \(P=\left(\frac{1}{x-1}-\frac{2}{x^2-1}\right):\left(\frac{1}{x+1}-\frac{2x-2}{x^2+x^2-x+1}\right)\)với \(x\ne\pm1\)a) Rút gọn P.b) Tìm tất cả giá trị nguyên của x để P đạt giá trị nguyên.Câu 2: 1. Cho đa thức \(P\left(x\right)=x^3-3x-1\)có 3 nghiệm phân biệt x1; x2; x3a) Chứng minh rằng: x1 + x2+ x3=0; x1x2 + x2x3 + x3x1 = -3 và x1x2x3=1b) Tính giá trị biểu thức: S = x19 + x29 + x39 ?2. Giải phương...
Đọc tiếp

Câu 1:

Cho biểu thức \(P=\left(\frac{1}{x-1}-\frac{2}{x^2-1}\right):\left(\frac{1}{x+1}-\frac{2x-2}{x^2+x^2-x+1}\right)\)với \(x\ne\pm1\)

a) Rút gọn P.

b) Tìm tất cả giá trị nguyên của x để P đạt giá trị nguyên.

Câu 2: 

1. Cho đa thức \(P\left(x\right)=x^3-3x-1\)có 3 nghiệm phân biệt x1; x2; x3

a) Chứng minh rằng: x+ x2+ x3=0; x1x+ x2x3 + x3x1 = -3 và x1x2x3=1

b) Tính giá trị biểu thức: S = x19 + x29 + x39 ?

2. Giải phương trình: \(\left(x^2-3x+2\right)\left(x^2+9x+20\right)=112\)

Bài 3: Cho tam giác ABC và điểm M di động trên đoạn BC. Gọi I là điểm bất kì trên đoạn AM và E là giao điểm của BI với cạnh AC.

a) Khi M và I thỏa mãn MC=2MB và AI=2IM. Tính tỉ số độ dài 2 đoạn AE và EC.

b) Khi M là trung điểm của BC, gọi F là giao điểm của CI với cạnh AB. Chứng minh rằng EF // BC ? 

0
20 tháng 2 2016

Ta có

P=(x-1)(x-6)(x-3)(x-4)+5

<=>(x2-7x+6)(x2-7x+12)+5

<=>(x2-7x+9-3)(x2-7x+9+3)+5

=>(x2-7x+9)2-9+5

=>Pmin=-4

5 tháng 3 2017

Câu 3

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a_2}{a_1}=\frac{a_3}{a_2}=\frac{a_4}{a_3}=......=\frac{a_{2001}}{a_{2000}}=\frac{a_1}{a_{2001}}=\frac{a_2+a_3+a_4+.....+a_{2001}+a_1}{a_1+a_2+a_3+.....+a_{2000}+a_{2001}}=1\)

=> a2 = a1

     a3 = a2 

     a4 = a3 

    .............

     a2001 = a2000

     a1 = a2001

=> a1 = a2 = a3 = ...... = a2001 

5 tháng 3 2017
  1. x=1 y=2 Ta thấy rằng nếu x >2 thì 2x^3>7 => x=1. Cứ tính rồi sẽ ra y
18 tháng 2 2021

Có: \(1=\left(a+b\right)^2\le\left(a^2+b^2\right)\left(1+1\right)=2\left(a^2+b^2\right)\)

Theo bđt Bunhiacopxki có: \(\left(\text{ax}+by\right)\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

Dấu '=' xảy ra khi ay=bx

\(\Rightarrow\left(a^2+b^2\right)\ge\frac{1}{2}\Rightarrow\left(a^2+b^2\right)^2\ge\frac{1}{4}\)

Dấu '=' xảy ra khi a=b=1/2

Khi đó : \(P=1:\frac{1}{4}+40.\frac{1}{8}=9\)

18 tháng 2 2021

một cách khác :))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(a^4+b^4=\frac{a^4}{1}+\frac{b^4}{1}\ge\frac{\left(a^2+b^2\right)^2}{2}\)(1)

Tiếp tục áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{2}=\frac{1^2}{2}=\frac{1}{2}\)(2)

Từ (1) và (2) => \(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\)(3)

Theo bất đẳng thức AM-GM ta có \(ab\le\left(\frac{a+b}{2}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)=> \(\frac{1}{ab}\ge4\)(4)

Từ (3) và (4) => \(P=\frac{1}{ab}\cdot40\left(a^4+b^4\right)\ge4\cdot40\cdot\frac{1}{8}=20\)

Đẳng thức xảy ra <=> a = b = 1/2

Vậy MinP = 20

Đề KSHSG lần 1 huyện Sông Lô - Vĩnh Phúc môn toán lớp 8,5 Câu 1:a) Phân tích đa thức thành nhân tử: \(xy\left(x+y\right)-yz\left(y+z\right)-zx\left(z-x\right)\)b) Cho x,y,z thỏa mãn: \(\frac{x-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}=2022\)Hãy tính \(P=\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}\) Câu 2: Cho đa...
Đọc tiếp

Đề KSHSG lần 1 huyện Sông Lô - Vĩnh Phúc môn toán lớp 8,5

 

Câu 1:

a) Phân tích đa thức thành nhân tử: \(xy\left(x+y\right)-yz\left(y+z\right)-zx\left(z-x\right)\)

b) Cho x,y,z thỏa mãn: 

\(\frac{x-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}=2022\)

Hãy tính \(P=\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}\)

 

Câu 2: Cho đa thức \(P\left(x\right)=\left(x+5\right)\left(x+10\right)\left(x+15\right)\left(x+20\right)+2021\)

Tìm đa thức dư khi chia P(x) cho đa thức \(x^2+25x+120\)

 

Câu 3: Cho a,b,c,d là các số nguyên thỏa mãn: \(a^3+b^3+19d^3-5c^3=0\)

Chứng minh rằng: a + b + c + d chia hết cho 3

 

Câu 4: Tìm nghiệm nguyên của PT:

\(4x^2+2xy+4x+y+3=0\)

 

Câu 5: Cho phương trình: \(\frac{x-2}{x-m}=\frac{x-1}{x+2}\) , tìm m để PT vô nghiệm

 

Câu 6: Cho a,b,c không âm thỏa mãn a + b + c = 3. Tìm Min và Max của:

\(P=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\)

 

Câu 7: Cho p là số nguyên tố, biết p2 + 23 có đúng 14 ước dương. Tìm p

 

Câu 8: Cho tam giác ABC vuông tại A, (AB > AC), đường cao AH. Trên nửa mặt phẳng bờ AH chứa điểm C vẽ hình vuông AHKE. Gọi P là giao điểm của KE và AC

a) Chứng minh tam giác ABP vuông cân

b) Vẽ hình vuông APQB. Gọi I là giao điểm của BP và AQ. Chứng minh H,I,E thẳng hàng

 

Câu 9: Cho tam giác ABC có \(\widehat{A}>\widehat{B}\). Trên cạnh BC lấy điểm H sao cho \(\widehat{HAC}=\widehat{ABC}\). Đường phân giác của góc BAH cắt BH tại E. Từ trung điểm M của AB kẻ ME cắt đường thẳng AH tại F. CMR: CF // AE

 

Câu 10: Cho đa giác đều 12 cạnh A1A2...A12 . Tại đỉnh A1 ta viết dấu (-) , các đỉnh còn lại ta viết dấu (+) . Mỗi lần cho phép lấy ra ba đỉnh liên tiếp và đổi dấu đồng thời các đỉnh đó. Hỏi sau hữu hạn bước có thể nhận được kết quả là đỉnh A2 mang dấu (-) còn các đỉnh khác mang dấu (+) được không?

 

5
24 tháng 9 2020

Câu 1

a) xy(x+y)-yz(y+z)+zx[(x+y)-(y+z)]=xy(x+y)+zx(x+y)-yz(y+z)-zx(y+z)=x(x+y)(y+z)-z(y+z)(y+x)=(x+y)(y+z)(x-z)

b) \(\frac{x-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}=2022\)

\(\Leftrightarrow\frac{x-z+z-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z+x-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-y+y-x}{\left(y-z\right)\left(y-x\right)}=2022\)

\(\Leftrightarrow\frac{-1}{z-y}+\frac{-1}{z-x}+\frac{-1}{x-z}+\frac{-1}{x-y}+\frac{-1}{x-y}+\frac{-1}{y-z}+\frac{1}{y-z}=2022\)

\(\Leftrightarrow2\left(\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}\right)=2022\)

\(\Leftrightarrow\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}=1011\)

24 tháng 9 2020

Câu 8: bạn sửa lại đề: AB<AC

a) Xét tam giác AHB và tam giác AEP có:

\(\widehat{AHB}=\widehat{AEP}=90^0\)

AH=KE (Tứ giác AHKE là hình vuông)

\(\widehat{HAB}=\widehat{AEP}\)(cùng phụ với \(\widehat{HAC}\))

\(\Rightarrow\Delta AHB=\Delta AEP\)(g-c-g)

=> AB=AP (2 cạnh tương ứng) => \(\Delta\)BAP cân tại A

b) Tứ giác ABQP là hình vuông nên IA=IB=IQ=IP (1)

Tam giác BKP vuông tại K nên KP=KB=KI (2)

Từ (1) và (2) suy ra: AI=KI nên I là đường trung trực của AK (3)

Vì AHKE là hình vuông nên HE là trung trực của AK (4)

Từ (3) và (4) suy ra: H;I:E cùng thuộc đường trung trực của AK hay H;I:E thằng hàng (đpcm)

Câu 9: Có \(\widehat{CEA}=\widehat{B}+\widehat{BAE}=\widehat{HAC}+\widehat{EAH}=\widehat{CAE}\)

\(\Rightarrow\Delta CAE\)cân tại C => CA=CE (1)

Qua H kẻ đường thằng song song với AB cắt MF ở K. Ta có \(\frac{BE}{EH}=\frac{MB}{KH}=\frac{MA}{KH}=\frac{FA}{FH}\left(2\right)\)

AE là phân giác của tam giác ABH nên \(\frac{BE}{EH}=\frac{AB}{AH}\left(3\right)\)

\(\Delta CAH\)và \(\Delta CBA\)đồng dạng \(\Rightarrow\frac{AB}{AH}=\frac{CA}{CH}=\frac{CE}{CH}\)(theo (1)) (4)

Từ (2);(3) và (4) => \(\frac{FA}{FH}=\frac{CE}{CH}\)hay \(\frac{AE}{FH}=\frac{CE}{CH}\)=> CF//AE (đpcm)

Câu 10: 

Chia các đỉnh của tam giác thành 3 nhóm \(\left\{A_1;A_4;A_7;A_{10}\right\};\left\{A_2;A_5;A_8;A_{11}\right\};\left\{A_3;A_6;A_9;A_{12}\right\}\)

Chọn 3 đỉnh liên tiếp thì mỗi đỉnh vào 1 nhóm

Do vậy số dấu "-" trong mỗi nhóm là +1 hoặc -1

Mà nhóm II và nhóm III cùng tính chẵn lẻ về số dấu "-"

Khi bắt đầu nhóm II, nhóm III số dấu "-" bằng 0. Nếu đỉnh A2 mang dấu "-" các đỉnh còn lại mang dấu "+" thì nhóm II, nhóm III khác đỉnh chẵn lẻ về số dấu "=". Mâu thuẫn!

P.s bài trình bày khó hiểu, bạn thông cảm! :)

29 tháng 1 2020

\(1,M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

Thay \(a+b=1\) vào ta được:

\(1\left(1-3ab\right)+3ab\left(1-2ab\right)+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)

\(=1\)

Vậy ......................