K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\frac{8a^2+b}{4a}+b^2=2a+\frac{b}{4a}+b^2\)

\(\ge2a+\frac{1-a}{4a}+b^2=2a+\frac{1}{4a}-\frac{1}{4}+b^2\)

\(\ge a+\frac{1}{4a}-b+b^2+\frac{3}{4}\)

\(=\left(a+\frac{1}{4a}\right)+\left(b^2-b+\frac{1}{4}\right)+\frac{1}{2}\)

\(=\left(a+\frac{1}{4a}\right) +\left(b-\frac{1}{2}\right)^2+\frac{1}{2}\)

\(\ge1+\frac{1}{2}=\frac{3}{2}\)

Dấu ''='' xảy ra khi \(a=b=\frac{1}{2}\)

30 tháng 6 2017

các bạn ơi làm hộ mình với

đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)

\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)

\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)

27 tháng 3 2016

Ta có 1/4(a+b)=a^2+b^2-ab>=(a+b)^2-3((a+b)^2/4)=(a+b)^2/4

=>0=<a+b=<1

Mặt khác A=<20(a+b)(a^2+b^2-ab)-6((a+b)^2/2)+2013

=>A=<20(a+b)((a+b)/4)-3(a+b)^2+2013=2(a+b)^2+2013=<2015

=>Amin=2015 khi a=b=1/2