Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4=2a^2+\dfrac{1}{a^2}+\dfrac{b^2}{4}=\left(a^2+\dfrac{1}{a^2}-2\right)+\left(a^2+\dfrac{b^2}{4}+ab\right)-ab+2\)
\(\Rightarrow4=\left(a-\dfrac{1}{a}\right)^2+\left(a+\dfrac{b}{2}\right)^2-ab+2\)
\(\Rightarrow ab=\left(a-\dfrac{1}{a}\right)^2+\left(a+\dfrac{b}{2}\right)^2-2\ge-2\)
\(M_{min}=-2\) khi \(\left\{{}\begin{matrix}a-\dfrac{1}{a}=0\\a+\dfrac{b}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;-2\right);\left(-1;2\right)\)
Bạn chỉ cần để ý điều này thôi: \(\left(x-\frac{1}{x}\right)^2=x^2-2.x.\frac{1}{x}+\frac{1}{x^2}=x^2-2+\frac{1}{x^2}\)
Do đó giả thiết viết lại thành:
\(\left(a^2-2+\frac{1}{a^2}\right)+\left(b^2-2+\frac{1}{b^2}\right)+\left(c^2-2+\frac{1}{c^2}\right)=0\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(b-\frac{1}{b}\right)^2+\left(c-\frac{1}{c}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-\frac{1}{a}=0\\b-\frac{1}{b}=0\\c-\frac{1}{c}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{a}\\b=\frac{1}{b}\\c=\frac{1}{c}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=1\\b^2=1\\c^2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a^2\right)^{1010}=1^{1010}\\\left(b^2\right)^{1010}=1^{1010}\\\left(c^2\right)^{1010}=1^{1010}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^{2020}=1\\b^{2020}=1\\c^{2010}=1\end{matrix}\right.\) \(\Leftrightarrow a^{2020}+b^{2020}+c^{2020}=3\)
Câu 1:
a: Để M là số nguyên thì \(2x^3-6x^2+x-3-5⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{4;2;8;-2\right\}\)
b: Để N là số nguyên thì \(3x^2+2x-3x-2+5⋮3x+2\)
\(\Leftrightarrow3x+2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-\dfrac{1}{3};-1;1;-\dfrac{7}{3}\right\}\)
+) \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Rightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)
\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
+) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)a: \(A=\dfrac{1}{x^2+x+1}+\dfrac{2}{x-1}-\dfrac{x^2+2x}{x^3-1}\)
\(=\dfrac{x-1+2x^2+2x+2-x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)
b: Để A là số nguyên thì \(x-1\in\left\{1;-1\right\}\)
hay \(x\in\left\{2;0\right\}\)
a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5
=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5
=(x-2)/(2x^2-5x+5)(x-1)