Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (a-b)2 \(\ge\)0 \(\forall\)a,b\(\Rightarrow\)a2+b2 \(\ge\)2ab. Mà ab=4\(\Rightarrow\)a2+b2 \(\ge\)8.
\(\Rightarrow\)P=\(\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\)\(\ge\)\(\frac{\left(a+b-2\right).8}{a+b}\)
Đặt t=a+b\(\Rightarrow\)t\(\ge\)4 (Do a+b \(\ge\)2\(\sqrt{ab}\)= 4)
\(\Rightarrow\)P=\(\frac{\left(t-2\right).8}{t}\) = \(\frac{8t-16}{t}\)=\(8-\frac{16}{t}\)
Vì t\(\ge\)4 \(\Rightarrow\)\(\frac{16}{t}\le\frac{16}{4}=4\)\(\Rightarrow-\frac{16}{t}\ge-4\)\(\Rightarrow\left(8-\frac{16}{t}\right)\ge8-4=4\)
\(\Rightarrow P\ge4.\)Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\a.b=4\end{cases}\Leftrightarrow a=b=2}\)
Vậy P min = 4 \(\Leftrightarrow\)a=b=2.
Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo.
Áp dụng BĐT AM-GM: \(\frac{a^3}{\left(b+c\right)^2}+\frac{b+c}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)
Suy ra \(\frac{a^3}{\left(b+c\right)^2}\ge\frac{3a-b-c}{4}\)
Tương tự các BĐT còn lại và cộng theo vế ta được \(VT\ge\frac{a+b+c}{4}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b= c = 2
Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x,y,z\right)\)
thi \(P= \Sigma \frac{z^2}{x+y} \geq \frac{x+y+z}{2} \) (1)
Mat khac co \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\) (2)
Tu (1) va (2) suy ra \(P\ge\frac{3}{2}\).Dau = xay ra khi \(a=b=c=1\)
Có \(2a+2b-3\ge2\sqrt{2a.2b}-1=1\)(vì ab=1)
\(\Rightarrow F\ge a^3+b^3+\frac{7}{\left(a+b\right)^2}\)
Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))
Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị
Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)
Khi đó \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)
Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)
Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)
Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)
Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)
Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))
Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1
Vì ( a - b )2 \(\ge\)0 \(\forall\)a,b \(\Rightarrow a^2+b^2\ge2ab\). Mà ab = 4 \(\Rightarrow a^2+b^2\ge8\)
\(\Rightarrow\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\ge\frac{\left(a+b-2\right).8}{a-b}\)
Đặt t = a + b \(\Rightarrow t\ge4\)( Do \(a+b\ge2\sqrt{ab}=4\))
\(\frac{\left(t-2\right).8}{t}=\frac{8t-16}{t}=8-\frac{16}{t}\)
Vì \(t\ge4\Rightarrow\frac{16}{t}\le\frac{16}{4}\Rightarrow-\frac{16}{t}\ge-4\Rightarrow\left(8-\frac{16}{t}\right)\ge8-4=4\)
\(\Rightarrow\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\ge4\)Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a,b=4\end{cases}\Leftrightarrow a=b=2}\)
Vậy \(\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\)min \(\Leftrightarrow a=b=2\)