Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét số dư của a, b khi chia cho 5 là: 0,1,2,3,4.
ta ghép cặp dần (0,0) (0,1),(0,2)...(3,4) thì chỉ có cặp (0,0) mới đảm bảo \(a^2+b^2+ab\)mới chia hết cho 5.
vậy a, b sẽ có tận cùng là 0 hoặc 5.
nếu a,b có cùng có chữ số tận cùng là 5 loại vì: \(a^2+b^2+ab\)là số lẻ không chia hết cho 2.
nếu a có chữ số tận cùng bằng 5, b chữ số có tận cùng bằng 0 thì \(a^2+b^2+ab\)là số lẻ nên không chia hết cho 2. (loại vì \(a^2+b^2+ab\)chia hết cho 10).
a, b có chữu số tận cùng bằng 0 khi đó \(a^2+b^2+ab\)là số chẵn nên chia hết cho 2(thỏa mãn).
do a, b có chữ số tận cùng bằng 0 nên \(a^2,b^2,ab\)sẽ có tận cùng là 100 nên \(a^2+b^2+ab\)chia hết cho 100.
\(a^2+b^2+ab\) chia hết cho 10
=> \(a^2+b^2+ab\) chia hết cho 2 và 5
\(a^2+b^2+ab=\left(a^2+b^2+2ab\right)-ab\)
\(=\left(a+b\right)^2-ab\)
Vì \(\left(a+b\right)^2;ab\) chia hết cho 2
=> \(\left(a+b\right)^2;ab\) cùng chẵn hoặc cùng lẻ
(+) Nếu \(\left(a+b\right)^2;ab\) (1)
=> a và b cùng lẻ
=> a+b chẵn ( mâu thuẫn với (1) )
=> a và b cùng là số chẵn
Để \(=\left(a+b\right)^2-ab\) chia hết cho 5 thì (a+b)^2 và ab có cúng số dư khi chia cho 10
Mình chỉ biết đến đó
Mà cũng ko chắc là đúng
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
b) A=m3+3m2-m-3
=(m-1)(m2+m+1) +m(m-1) +2(m-1)(m+1)
=(m-1)(m2+m+1+m+2m+2)
=(m-1)(m2+4m+4-1)
=(m-1)[ (m+2)2-1 ]
=(m-1)(m+1)(m+3)
với m là số nguyên lẻ
=> m-1 là số chẵn(nếu gọi m là 2k-1 thì 2k-1-1=2k-2=2(k-1)(chẵn)
m+1 là số chẵn (tương tự 2k11+1=2k(chẵn)
m+3 là số chẵn (tương tự 2k-1+3=2k++2=2(k+2)(chẵn)
ta có:gọi m là 2k-1 thay vào A ta có:(với k là số nguyên bất kì)
A=(2k-2)2k(2k+2)
=(4k2-4)2k
=8k(k-1)(k+1)
k-1 ;'k và k+1 là 3 số nguyên liên tiếp
=> (k-1)k(k+1) sẽ chia hết cho 6 vì trong 3 số liên tiếp luôn có ít nhất 1 số chia hết cho 2 , 1 số chia hết cho 3
=> tích (k-1)k(k+1) luôn chia hết cho 6
=> A=8.(k-1)(k(k+1) luôn chia hết cho (8.6)=48
=> (m3+3m3-m-3) chia hết cho 48(đfcm)
\(2a^2+3ab+2b^2=2\left(a-b\right)^2+7ab....\) chia hết cho 7=> a-b chia hết cho 7
=> (a-b)(a+b) chia hết cho 7 hay a2-b2 chia hết cho 7.
sao từ a-b chia hết cho 7 lại suy r dc (a-b)(a+b) cũng thế v bn
Hình như thiếu đề nên cho cả n là số tự nhiên khác 0 nữa.
Xét n = 1 thì ta có:
\(m^2-1=\left(2x+1\right)^2-1=4\left(x^2+x\right)⋮8\)
Giả sử nó đúng tới n = k
\(\Rightarrow m^{2^k}-1=a.2^{k+2}=ay\)
\(\Rightarrow m^{2^k}=ay+1\)
Ta chứng minh nó đúng với n = k + 1
Hay \(\Rightarrow m^{2.2^k}-1⋮2^{k+2+1}\)
\(\Rightarrow\left(ay+1\right)^2-1⋮2y\)
Ta có: \(\left(ay+1\right)^2-1=a^2y^2+2ay\)
Mà \(\hept{\begin{cases}a^2y^2⋮2y\\2ay⋮2y\end{cases}}\)(do y là số chẵn)
\(\Rightarrow\)Nó đúng với n = k + 1.
Vậy theo quy nạp ta có điều phải chứng minh.
\(a^2-b^2=\left(a+b\right)\left(a-b\right)\)
Ta có: a+b và a-b (cùng chẵn)
Và: a;b có số dư cho 4 là: 1;3
+) a;b có cùng số dư khi đó:
a-b chia hết cho 4 và a+b chia hết cho 2
=> a^2-b^2 chia hết cho 8
+) a;b khác số dư khi đó:
a+b chia hết cho 4 và a-b chia hết cho 2
=> a^2-b^2 chia hết cho 8
Vậy với a,b lẻ thì: a2-b2 chia hết cho 8
đặt a=2k+1(k nguyên)
b=2m+1(m nguyên)
suy ra a^2-b^2=(a-b)(a+b)=(2k-2m)(2k+2m+2)=4(k-m)(k+m+1)
nếu k-m chẵn thì bài toán được chứng minh
nếu k-m lẻ suy ra k và m có 1 số chẵn 1 số lẻ suy ra k+m+1 chẵn
bài toán được chứng minh