K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Vì :
a^2; b^2 là số chính phương
a,b không chia hết cho 3
Nên a^2; b^2 chia 3 dư 1
=> a^2 - b^2 chia hết cho 3                                                                     (1)
Ta có : 
(a^2 - 1) - (b^2 - 1) = (a - 1)(a + 1) - (b - 1)(b + 1) chia hết cho 8                 (2)
Vì :
(a - 1); (a + 1)(a - 1); (a + 1) là 2 số chẵn liên tiếp 
(b - 1); (b + 1)(b - 1), (b + 1) là 2 số chẵn liên tiếp
Từ (1), (2)
=> a^2 - b^2 chia hết cho 3.8
=> a^2 - b^2 chia hết cho 24

6 tháng 8 2019

cảm ơn bn

10 tháng 8 2020

Theo đề bài, ta có: \(p^2+a^2=b^2\Rightarrow p^2=b^2-a^2=\left(b+a\right)\left(b-a\right)\)(1)

Vì p là số nguyên tố nên \(p^2\)có 3 ước là \(1;p;p^2\)(2)

Từ (1) và (2) suy ra có 3 khả năng có thể xảy ra là:

Khả năng 1: \(\hept{\begin{cases}b+a=1\\b-a=p^2\end{cases}}\). Điều này không thể xảy ra vì p > 3 nên \(p^2>9\Rightarrow b-a>9>1=b+a\Rightarrow-2a>0\)vô lí vì a nguyên dương

Khả năng 2: \(\hept{\begin{cases}b+a=p\\b-a=p\end{cases}}\Rightarrow b+a=b-a\Rightarrow2a=0\Rightarrow a=0\)(Loại vì a nguyên dương, không thể bằng 0)

Khả năng 3: \(\hept{\begin{cases}b+a=p^2\left(3\right)\\b-a=1\left(4\right)\end{cases}}\)

Lấy (3) - (4), ta được: \(2a=p^2-1=\left(p+1\right)\left(p-1\right)\)

Vì p là số nguyên tố lớn hơn 3 (*) nên p không chia hết cho 3 nên \(p^2\)chia 3 dư 1\(\Rightarrow p^2-1⋮3\)

\(\Rightarrow2a⋮3\)mà \(\left(2,3\right)=1\)nên \(a⋮3\)(**)

Từ (*) suy ra p lẻ nên \(p-1\)và \(p+1\)là hai số chẵn liên tiếp

Đặt \(p-1=2k\left(k\inℕ,k>1\right)\)thì \(p+1=2k+2\Rightarrow\left(p-1\right)\left(p+1\right)=4k\left(k+1\right)\)

Vì \(k\left(k+1\right)\)là tích của hai số nguyên liên tiếp nên \(k\left(k+1\right)⋮2\)suy ra \(4k\left(k+1\right)⋮8\)

hay \(2a⋮8\Rightarrow a⋮4\)(***)

Từ (**) và (***) suy ra \(a⋮12\)do \(\left(3,4\right)=1\)(đpcm)

Vì \(2a=p^2-1\Rightarrow2\left(p+a+1\right)\)       \(=2p+2a+2=2p+p^2-1+2=p^2+2p+1=\left(p+1\right)^2\)là số chính phương (đpcm)

23 tháng 10 2016

rong các nhân vật Sơn Tinh , Thánh Gióng , Thạch sanh em thích nhân vật nào nhứt ! Vì SAO?

Nè ti k cần mấy người dạy đời nhé tui bị trừ điểm hay xóa nick là chuyện của tui

tui cần ấy người trả lời thui ai trả lời hay và nhanh tui k cho 3 cái nhé

tối nay hạn chót òi

2 tháng 12 2016

vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2 
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3 
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3 
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1) 
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp 
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4 
=>p^2-1 chia hết cho 8 (2) 
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3

3 tháng 11 2017

a)\(\left(a^2-1\right)=\left(a+1\right)\left(a-1\right)\)

Xét\(a=3k+1\)\(\Rightarrow a-1⋮3\)\(\Rightarrow a^2-1⋮3\)

Tương tự a=3k+2

Bạn chứng minh tích 2 số nhẵn liên tiếp chia hết cho 8

Mà (3;8)=1

\(\Rightarrow a^2-1⋮24\)

20 tháng 8 2016

+ Do a nguyên tố > 3 => a không chia hết cho 3 => a2 không chia hết cho 3

=> a2 chia 3 dư 1

=> a2 - 1 chia hết cho 3 (1)

+ Do a nguyên tố > 3 => a lẻ => a2 lẻ

=> a2 chia 8 dư 1

=> a2 - 1 chia hết cho 8 (2)

Từ (1) và (2), do (3;8)=1 => a2 - 1 chia hết cho 24 ( đpcm)

24 tháng 12 2016

dễ mà, toán lớp 6 ấy chứ

5 tháng 3 2018

Vì p là SNT>3 nên p lẻ,p có dạng 3k+1 hoặc 3k+2(k thuộc N)

+)p=3k+1

p^2-1=9k^2+6k+1-1=9k^2+6k chia hết cho 3

p^2-1=(p-1)(p+1) mà p lẻ nên đây là 2 số chẵn liên tiếp tồn tại 1 số chia hết cho 4 nên chia hết cho 8

p^2-1:3.8=24

+)p=3k+2 cmtt nha

17 tháng 7 2017

Giải:

\(^{a^2-b^2}\)=(\(a^2\)-1)-(\(b^2\)-1)

\(a^2\)là số chính phương lẻ chia 8 dư1\(\rightarrow\)\(a^2\)-1\(⋮\)8 (1)

\(a^2\)là số chính phương lẻ chia 3 dư 1\(\rightarrow\)\(a^2\)\(⋮\)3 (2)

Từ (1) (2) =>\(a^2\)-1\(⋮\)24

Tương tự: \(b^2\)-1\(⋮\)24\(\rightarrow\)đpcm