Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x = 99
=> 100 = x + 1
Thay vào A ta có : A = x2018 - 100x2017 + 100x2016 - ...... + 100x2 - 100x + 2019
=> A = x2018 - (x + 1)x2017 + (x + 1)x2016 - ...... + (x + 1)x2 - (x + 1)x + 2019
=> A = x2018 - x2018 - x2017 + x2017 + x2016 -.......+ x3 + x2 - x2 + x + 2019
=> A = x + 2019
=> A = 99 + 2019
=> A = 2118
P/s : ko cần ! :D
Theo đề bài ra ta có :
x = 99
Thay vào A ta có :
A = x2018 - 100x2017 + 100x2016 - ... + 100x2 - 100x + 2019
\(\Rightarrow\) A = x2018 - ( x + 1 ) x2017 + ( x + 1 ) x2016 - ... + ( x + 1 ) x2 - ( x + 1 ) x + 2019
\(\Rightarrow\) A = x2018 - x2018 - x2017 + x2017 + x2016- ... + x3 + x2 - x2 + x + 2019
\(\Rightarrow\) A = x + 2019
\(\Rightarrow\) A = 99 + 2019
\(\Rightarrow\) A = 2118
A = 2018^2 - 2016^2
A = (2018 - 2016)(2018 + 2016)
A = 2.4034
B = 2019^2 - 2017^2
B = (2019 - 2017)(2019 + 2017)
B = 2.4036
=> A < B
ggbgbgkbgbgkbokgbgobgkbkogokbgkobkogbkbgb,mb.gnl'g
câu trả lời ở bên dưới
gf'gbf
fgjfb
b
bk
gkbgobpgbogojbgmkh
gg
g
gg
g
g
g
g
g
g
gg
g
g
g
g
g
g
g
g
gg
g
g
g
g
g
g
fgfbgf
nơgnpgpngpnpgnpgpngpnmgknfbbngmnlkgnlmgngnlmbklfgbpfoigfg[e[gr
bố mày đéo bt
\(A=\left(2018-2016\right)\left(2018+2016\right)=2.4034\)
\(B=\left(2019-2017\right)\left(2019+2017\right)=2.4036\)
Ta thấy 4034 < 4036 nên A < B.
\(A=2018^2-2016^2=\left(2018+2016\right)\left(2018-2016\right)=4034.2\)
\(B=2019^2-2017^2=\left(2019+2017\right)\left(2019-2017\right)=4036.2\)
Vì 4036 > 4034 nên 4036 . 2 > 4034 . 2 nên B > A
\(a;b;c\ne0\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}=\frac{1}{a+b+c}\)\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b=0\\ab=-c\left(a+b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\ab+ac+bc+c^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\\left(a+c\right)\left(b+c\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\a+c=0\\b+c=0\end{matrix}\right.\)
\(M=\left(a^{2015}+b^{2015}\right)\left(a^{2017}+b^{2017}\right)\left(a^{2019}+b^{2019}\right)\)
- Nếu \(a+b=0\Rightarrow M=0\)
- Nếu \(\left[{}\begin{matrix}a+c=0\\b+c=0\end{matrix}\right.\) thì ko tính được giá trị cụ thể của M
Khi đó \(\left[{}\begin{matrix}M=\left(2018^{2015}+b^{2015}\right)\left(2018^{2017}+b^{2017}\right)\left(2018^{2019}+b^{2019}\right)\\M=\left(2018^{2015}+a^{2015}\right)\left(2018^{2017}+a^{2017}\right)\left(2018^{2019}+a^{2019}\right)\end{matrix}\right.\)
Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath
Thya các giá trị của a, b, c., d vào M . Tính đc M = 0
Tham khảo tại đây:
Câu hỏi của Carthrine Nguyễn - Toán lớp 7 | Học trực tuyến