![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
thôi mình biết làm rồi, các bạn ko cần giải nữa đâu nhé!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(x^2\ge0\forall x\in Q\)
\(y^2\ge0\forall x\in Q\)
\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)
\(\left(y-4\right)^2\ge0\forall x\in Q\)
\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)
c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)
\(\left|x-3\right|\ge0\forall x\in Q\)
\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án B mk cx ko bt cách lm bài này nhưng mk chọn đáp án B
Chúc bn học tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có : \(2b=a+c\Leftrightarrow b+b=a+c\Leftrightarrow b-a=c-b\)
\(2c=b+d\Leftrightarrow c+c=b+d\Leftrightarrow c-b=d-c\)
\(\Rightarrow b-a=d-c\)
vì \(a;b;c;d\inℤ\Rightarrow b-a;d-c\inℤ\)
đặt \(b-a=c-b=d-c=k\left(k\inℤ\right)\)
ta có : \(b-a=k\Rightarrow a=b-k\)
\(c-b=k\Rightarrow c=k+b\)
\(d-c=k\Rightarrow d=c+k\)
ta có : \(c^2\ge0\Rightarrow d^2\le c^2+d^2< 4\Rightarrow d^2< 4\)
mà \(d=c+k\Rightarrow\left(c+k\right)^2< 4\Rightarrow\left(k+b+k\right)^2< 4\)
\(\Rightarrow4\left(1+k\right)^2< 4\) ( vì \(b=2\) ) \(\Rightarrow\text{ }\left[2\left(1+k\right)\right]^2< 4\)
\(\Rightarrow4\left(1+k\right)^2< 4\Rightarrow\left(1+k\right)^2< 1\) mà \(\left(1+k\right)^2\ge0\)
\(\Rightarrow0\le\left(1+k\right)^2< 1\Rightarrow0\le1+k< 1\Rightarrow1+k=0\Rightarrow k=-1\)( vì \(k\inℤ\Rightarrow1+k\inℤ\) )
ta có \(c=k+b=-1+2=1\) ( vì \(b=2;k=-1\) )
\(\Rightarrow d=c+k=1+\left(-1\right)=0\) ( vì \(c=1;k=-1\) )
\(\Rightarrow a=b-k=2-\left(-1\right)=3\)
thử lại
\(2b=a+c=2.2=3+1\Rightarrow4=4\) ( thỏa mãn )
\(2c-b+d=2.1=2+0\Rightarrow2=2\) ( thỏa mãn )
\(c^2+d^2< 4\Rightarrow1^2+0^2< 4\Rightarrow1< 4\) ( thỏa mãn )
vậy \(a=3\)
ta có : 2b = a + c⇔b + b = a + c⇔b − a = c − b
2c = b + d⇔c + c = b + d⇔c − b = d − c
⇒b − a = d − c
vì a;b;c;d ∈ ℤ⇒b − a;d − c ∈ ℤ
đặt b − a = c − b = d − c = k k ∈ ℤ
ta có : b − a = k⇒a = b − k
c − b = k⇒c = k + b
d − c = k⇒d = c + k
ta có : c
2
≥ 0⇒d
2
≤ c
2
+ d
2
< 4⇒d
2
< 4
mà d = c + k⇒ c + k
2
< 4⇒ k + b + k
2
< 4
⇒4 1 + k
2
< 4 ( vì b = 2 ) ⇒ 2 1 + k
2
< 4
⇒4 1 + k
2
< 4⇒ 1 + k
2
< 1 mà 1 + k
2
≥ 0
⇒0 ≤ 1 + k
2
< 1⇒0 ≤ 1 + k < 1⇒1 + k = 0⇒k = −1( vì
k ∈ ℤ⇒1 + k ∈ ℤ )
ta có c = k + b = −1 + 2 = 1 ( vì b = 2;k = −1 )
⇒d = c + k = 1 + −1
![](https://rs.olm.vn/images/avt/0.png?1311)
2. tìm số tự nhiên x , biết
A. 3x - 14 = 25 : 23
3x - 14 = 25-3
3x-14 = 22
3x - 14 = 4
3x = 4 + 14
3x = 18
x = 18: 3
x = 6
B. 150 - 2 . ( x + 2 ) = 4 . 22
150 - 2 ( x + 2 ) = 22 . 22
150 - 2 (x + 2) = 22+2
150 - 2 (x+2 ) = 24
150-2 (x+2 ) = 16
2 ( x+2 ) = 150 - 16
2 (x+2) = 134
x+2 = 134 : 2
x +2 =67
x = 65
4. so sánh 5 200 và 2 500
\(2^{500}=\left(2^5\right)^{100}=23^{100}\)
\(5^{200}=\left(5^2\right)^{100}=25^{100}\)
Vì \(23< 25\) nên:
\(\Rightarrow23^{100}< 25^{100}\)
Vậy : \(5^{200}>2^{500}\)