\(\frac{bd}{b-d}\)                \(b\ne0;d\ne0...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

\(c=\frac{bd}{b-d}\)

=> c(b - d) = bd

=> bc - cd = bd

=> bc = bd + cd

=> bc = d(b + c)

=> bc = ad

=> \(\frac{a}{b}=\frac{c}{d}\)

8 tháng 10 2017

cảm ơn bạn nhiều nhiều !!!!!!!!!!!!!!!!!

6 tháng 10 2019

Ta có :

\(c=\frac{bd}{b-d}\)

\(\Rightarrow b-d=\frac{bd}{c}\left(c\ne0\right)\)

\(a=b+c\Rightarrow c=a-b\)

\(\Rightarrow c=\frac{bd}{b-d}=a-b\)

\(\Rightarrow bd=\left(a-b\right).\left(b-d\right)\)

\(\Rightarrow ab-ad-b^2+bd=bd\)

\(\Rightarrow a\left(b-d\right)-b^2=0\)

\(\Rightarrow a.\frac{bd}{c}-b^2=0\)

\(\Rightarrow\frac{ad}{c}-b=0\)

\(\Rightarrow\frac{ad-bc}{c}=0\)

\(\Rightarrow ad-bc=0\)

\(\Rightarrow ad=bc\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

Chúc bạn học tốt !!!

4 tháng 9 2016

Ta có :

\(c=\frac{bd}{b-d}\Leftrightarrow bc-cd=bd\)

\(\Rightarrow bc=d\left(b+c\right)\)

\(\Rightarrow bc=ad\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Vậy ...

28 tháng 7 2016

bạn áp dụng dãy tỉ số bằng nhau là xong

28 tháng 7 2016

1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)

-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)

2) ta có \(\frac{a}{b}=\frac{c}{d}\)

đặt a=kb và c=kd

\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

31 tháng 8 2016

vì \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

\(\)\(\)\(nha!\)

1 tháng 5 2019

thêm cái ĐK cho mẫu số khác 0: \(b\ne d\)

24 tháng 7 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng t/c dãy tỷ số bằng nhau

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(dpcm\right)\)

24 tháng 7 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\left(1\right)\)

Thay (1) vào từng biểu thức ta có :

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\)

\(\RightarrowĐPCM\)

29 tháng 8 2019

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\left(đpcm\right)\)