Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
THƯA CHỊ BÀI NÀY LÀ SAO AK, E HỌC LỚP 5 ** BIK BÀI NÀY NHÉ ~_~ !!!!!!!!!!!
Áp dụng BĐT AM-GM ta có:
\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}\)\(=\frac{1}{2\sqrt{bc}}\)
Tương tự cho 2 BĐT còn lại ta có:
\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Theo AM-GM có
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) thì
\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)
Đẳng thức xảy ra khi \(a=b=c=1\)
từ GT suy ra abc >=1 và a/bc + b/ca + c/ab = 3.
áp dụng BĐT Cauchy : a4 + bc >=2a2v(bc) (v(bc) là căn bc).
nên a2/a4 + bc <=1/2v(bc).
do đó M <= 1/2.(1/v(bc) + 1/v(ca) + 1/v(ab).
ta chứng minh N = (1/v(bc) + 1/v(ca) + 1/v(ab) <=3 là xong.
thật vậy.
giả sử a <=b<=c nên 1/v(bc) <= 1/v(ca)<= 1/v(ab).
áp dụng BĐT Trê bư sep ta được (v(a) + v(b) + v(c))/3 . ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= (v(a)/v(bc) + v(b)/v(ca) + v(c)/v(ab)/3.
ta có v(a) + v(b) + v(c) >=3 căn6(abc)>=3.
nên VT >=((1/v(bc) + 1/v(ca) + 1/v(ab))/3. (1)
lại có (x + y + z)2 <=3(x2 + y2 + z2) nên (VP)2 <= (a/bc + b/ca + c/ab)/3= 1.
hay VP <= 1 (2).
từ (1) và (2) suy ra ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= 1 hay
(1/v(bc) + 1/v(ca) + 1/v(ab) <= 3
tức N <= 3 (đpcm).
(mình chưa biết đánh nên cố đọc nhé!)
Ta có: \(abc\le\frac{\left(a+b+c\right)^3}{27}\) ; \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Mà \(a^2+b^2+c^2=3abc\)
=>\(\frac{\left(a+b+c\right)^2}{3}\le\frac{\left(a+b+c\right)^3}{27}.3\)
=> \(a+b+c\ge3\)
Áp dụng bđt bunhia dạng phân thức ta có:
\(M\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}\)
Đặt \(a+b+c=x\left(x\ge3\right)\)
=> \(M\ge\frac{x^2}{x+6}\)
Xét \(\frac{x^2}{x+6}\ge\frac{5}{9}x-\frac{2}{3}\)
<=>\(x^2\ge\frac{5}{9}x^2+\frac{8}{3}x-4\)
<=>\(\left(\frac{2}{3}x-2\right)^2\ge0\)(luôn đúng)
=> \(M\ge\frac{5}{9}x-\frac{2}{3}\ge\frac{5}{9}.3-\frac{2}{3}=1\)
=>\(MinM=1\)xảy ra khi a=b=c=1
bạn chia a^2 cho ca tu và mẫu . từ giả thiết ta có : 3abc >= ab +bc+ ca . suy ra : 1/a + 1/b +1/c<=3 . sau khi chia ở A : ta có si ở mẫu . rồi áp dụng cô si ngc la ra . ban nao ko hieu thi nhan voi minh
\(VT=3\left(a+b+c\right)+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)\(=\left(3a+\frac{2}{a}\right)+\left(3b+\frac{2}{b}\right)+\left(3c+\frac{2}{c}\right)\)
*Nháp*
Dự đoán điểm rơi tại a = b = c = 1 khi đó VT = 15
Ta dự đoán BĐT phụ có dạng \(3x+\frac{2}{x}\ge mx^2+n\)(Ta thấy hạng tử trong điều kiện đã cho ban đầu có bậc là 2 nên VP của BĐT phụ cũng có bậc 2) (*)
Do đó ta có: \(3a+\frac{2}{a}\ge ma^2+n\);\(3b+\frac{2}{b}\ge mb^2+n\);\(3c+\frac{2}{c}\ge mc^2+n\)
Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge m\left(a^2+b^2+c^2\right)+3n=3\left(m+n\right)=15\)
\(\Rightarrow m+n=5\Rightarrow n=5-m\)
Thay n = 5 - m vào (*), ta được: \(3x+\frac{2}{x}\ge mx^2+5-m\)
\(\Leftrightarrow\frac{3x^2-5x+2}{x}\ge m\left(x^2-1\right)\Leftrightarrow\frac{\left(x-1\right)\left(3x-2\right)}{x\left(x+1\right)}\ge m\left(x-1\right)\)
\(\Leftrightarrow m\le\frac{3x-2}{x\left(x+1\right)}\)(**)
Đồng nhất x = 1 vào (**), ta được: \(m=\frac{1}{2}\Rightarrow n=\frac{9}{2}\)
Ta được BĐT phụ \(3x+\frac{2}{x}\ge\frac{x^2}{2}+\frac{9}{2}\)
GIẢI:
Ta có: \(a^2+b^2+c^2=3\Rightarrow0< a^2;b^2;c^2\le3\Rightarrow0< a;b;b\le\sqrt{3}\)
Ta chứng minh BĐT phụ sau: \(3x+\frac{2}{x}\ge\frac{x^2}{2}+\frac{9}{2}\)(với \(0< x\le\sqrt{3}\))
\(\Leftrightarrow\frac{\left(4-x\right)\left(x-1\right)^2}{2x}\ge0\)(đúng với mọi \(0< x\le\sqrt{3}\))
Áp dụng, ta được: \(3a+\frac{2}{a}\ge\frac{a^2}{2}+\frac{9}{2}\);\(3b+\frac{2}{b}\ge\frac{b^2}{2}+\frac{9}{2}\);\(3c+\frac{2}{c}\ge\frac{c^2}{2}+\frac{9}{2}\)
Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}.3=15\)
Đẳng thức xảy ra khi a = b = c = 1
hình chử nhật có chu vi là 150m chiều dài hơn chiều rộng là 15m tìm tỉ số của chiều rộng và chiều dài hinh chử nhật đó
ui..khó qw ~ mún giải lắm nhưng hk đc...e ms lp 7 thoy ak***ahihi^^
nè đọc cái bất đnagử thức shur và kĩ năng đặt ẩn p-q-r đi là giải ra , nên tìm kiếm trong ộng tổ google đi nhé\