Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)
\(\Leftrightarrow a^4+b^4\ge ab^3+a^3b\)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(*)
Mà \(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\)
Suy ra (*) đúng => đpcm
Dấu "=" xảy ra khi a = b
b.
\(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow3a^4+3b^4+3c^4\ge a^4+ab^3+ac^3+a^3b+b^4+bc^3+a^3c+b^3c+c^4\)
\(\Leftrightarrow2a^4+2b^4+2c^4\ge ab^3+a^3b+b^3c+bc^3+ca^3+c^3a\)
\(\Leftrightarrow\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge\left(a^3b+ab^3\right)+\left(b^3c+bc^3\right)+\left(c^3a+ca^3\right)\)
Theo câu a. thì điều này đúng
Dấu "=" khi a=b=c
5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
áp dụng bđ cosy
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
=> đpcm
6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
hay với mọi x thuộc R đều là nghiệm của bpt
7.áp dụng bđt cosy
\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)
a)\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
b,c tương tự
d)Áp dụng bđt AM-GM ta được
\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4a^4b^4c^4}=4a^2bc\)
TT\(\Rightarrow a^4+b^4+b^4+c^4\ge4ab^2c\)
\(a^4+b^4+c^4+c^4\ge4abc^2\)
Cộng vế theo vế ta được \(4\left(a^4+b^4+c^4\right)\ge4\left(a^2bc+ab^2c+abc^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\left(đpcm\right)\)
d)
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
\(\Leftrightarrow a^4+b^4+c^4-a^2bc-ab^2c-abc^2\ge0\)
\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2bc-2ab^2c-2abc^2\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+2a^2b^2+\left(b^2-c^2\right)^2+2b^2c^2+\left(c^2-a^2\right)^2+2a^2c^2-2a^2bc-2b^2ac-2c^2ab\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(a^2b^2+b^2c^2-2b^2ac\right)+\left(b^2c^2+c^2a^2-2c^2abc\right)+\left(a^2b^2+c^2a^2-2a^2ab\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(ab-bc\right)^2+\left(bc-ac\right)^2+\left(ab-ac\right)^2\ge0\)
Luôn đúng với mọi a , b , c
Lời giải:
Sử dụng pp biến đổi tương đương:
a) \(\frac{a^2+b^2}{2}\geq \left(\frac{a+b}{2}\right)^2\)
\(\Leftrightarrow \frac{a^2+b^2}{2}\geq \frac{(a+b)^2}{4}\)
\(\Leftrightarrow 4(a^2+b^2)\geq 2(a+b)^2\Leftrightarrow 4(a^2+b^2)\geq 2(a^2+2ab+b^2)\)
\(\Leftrightarrow 2(a^2+b^2)\geq 4ab\Leftrightarrow 2(a^2+b^2-2ab)\geq 0\)
\(\Leftrightarrow 2(a-b)^2\geq 0\) (luôn đúng)
Do đó ta có đpcm. Dấu bằng xẩy ra khi $a=b$
c)
\(\frac{a^2+b^2+c^2}{3}\geq \left(\frac{a+b+c}{3}\right)^2\) \(\Leftrightarrow \frac{a^2+b^2+c^2}{3}\geq \frac{(a+b+c)^2}{9}\)
\(\Leftrightarrow 3(a^2+b^2+c^2)\geq (a+b+c)^2\)
\(\Leftrightarrow 3(a^2+b^2+c^2)\geq a^2+b^2+c^2+2(ab+bc+ac)\)
\(\Leftrightarrow 2(a^2+b^2+c^2)\geq 2(ab+bc+ac)\)
\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)\geq 0\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\) (luôn đúng)
Do đó ta có đpcm. Dấu bằng xảy ra khi $a=b=c$
b) \(\frac{a^4+b^4}{2}\geq \left(\frac{a+b}{2}\right)^4\)
Áp dụng 2 lần BĐT phần a: \(\frac{a^4+b^4}{2}\geq \left(\frac{a^2+b^2}{2}\right)^2(1)\)
Và: \(\frac{a^2+b^2}{2}\geq \left(\frac{a+b}{2}\right)^2\Rightarrow \left(\frac{a^2+b^2}{2}\right)^2\geq \left(\frac{a+b}{2}\right)^4(2)\)
Từ \((1); (2)\Rightarrow \frac{a^4+b^4}{2}\geq \left(\frac{a+b}{2}\right)^4\) (đpcm)
Dấu bằng xảy ra khi \(a=b\)
B1:
\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Xét hiệu:
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\)
\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)
\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
=> BĐT luôn đúng
*
Ta có:
\(a< b+c\Rightarrow a^2< ab+ac\)
\(b< a+c\Rightarrow b^2< ab+ac\)
\(c< a+b\Rightarrow a^2< ac+bc\)
Cộng từng vế bất đẳng thức ta được:
\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Vậy: \(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
B2:
Ta có: \(a+b>c\) ; \(b+c>a\); \(a+c>b\)
Xét:\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{a+b+c}+\dfrac{1}{a+c+b}=\dfrac{2}{a+b+c}>\dfrac{2}{b+c+b+c}=\dfrac{1}{b+c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+c+a+c}=\dfrac{1}{a+c}\)
Suy ra:
\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b}\)
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)
=> ĐPCM
5) a) Ta có: \(a< b+c\)
\(\Rightarrow a^2< ab+ac\)
Tương tự: \(b^2< ba+bc\)
\(c^2< ca+cb\)
Cộng từng vế các BĐT vừa chứng minh, ta được đpcm
b) Ta có: \(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)
\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)
Nhân từng vế các BĐT trên, ta được
\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)
Các biểu thức trong ngoặc vuông đều dương nên ta suy ra đpcm
Bài 5:
a)
Ta có \(a^2+b^2+c^2<2(ab+bc+ac)\)
\(\Leftrightarrow a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)
Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác nên
\(b+c-a,a+b-c,c+a-b>0\)
b) Áp dụng BĐT Am-Gm:
\((a+b-c)(b+c-a)\leq \left ( \frac{a+b-c+b+c-a}{2} \right )^2=b^2\)
\((a+b-c)(c+a-b)\leq \left (\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)
\((b+c-a)(a+c-b)\leq \left ( \frac{b+c-a+a+c-b}{2} \right )^2=c^2\)
Nhân theo vế :
\(\Rightarrow [(a+b-c)(b+c-a)(c+a-b)]^2\leq a^2b^2c^2\)
\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)
Do đó ta có đpcm
c)
\(a^3+b^3+c^3+2abc< a^2(b+c)+b^2(c+a)+c^2(a+b)\)
\(\Leftrightarrow a(ab+ac-a^2-bc)+b(ab+bc-b^2-ac)+c(ca+cb-c^2)>0\)
\(\Leftrightarrow a(a-c)(b-a)+b(b-c)(a-b)+c^2(a+b-c)>0\)
\(\Leftrightarrow (a-b)(b-a)(b+a-c)+c^2(b+a-c)>0\)
\(\Leftrightarrow (b+a-c)[c^2-(a-b)^2]>0\)
Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác thì \(b+a>c, c>|a-b|\)
Do đó ta có đpcm.
b)a2+b2+c2≥ab+bc+aca2+b2+c2≥ab+bc+ac
⇔2(a2+b2+c2)≥2(ab+bc+ac)⇔2(a2+b2+c2)≥2(ab+bc+ac)
⇔2a2+2b2+2c2−2ab−2bc−2ac≥0⇔2a2+2b2+2c2−2ab−2bc−2ac≥0
⇔(a2−2ab+b2)+(b2−2bc+c2)+(c2−2ac+a2)≥0⇔(a2−2ab+b2)+(b2−2bc+c2)+(c2−2ac+a2)≥0
⇔(a−b)2+(b−c)2+(c−a)2≥0⇔(a−b)2+(b−c)2+(c−a)2≥0 (luôn đúng)
Dấu ''='' xảy ra khi a=b=c
Câu 1:
Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)
\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)
Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)
Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
5 , a3+b3+c3\(\ge\) 3abc
\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0
\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)
ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)
(a-b)2+(b-c)2+(c-a)2\(\ge0\)
<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)
<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)
Từ (1)(2)(3)=> pt luôn đúng