\(\in\)Z biết : ab - ac + bc - c2 = -1. Chứng minh rằng a và b đối...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

a) Giải:

Ta có:

\(ab-ac+bc-c^2=-1\)

\(\Rightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)

\(\Rightarrow\left(b-c\right)\left(a+c\right)=-1\)

Suy ra trong hai thừa số \(\left(b-c\right);\left(a+c\right)\) có một thừa số bằng \(1\)

Thừa số kia bằng \(-1\), nghĩa là chúng đối nhau

\(\Rightarrow b-c=-\left(a+c\right)\) Hay \(b-c=-a-c\)

Suy ra \(b=-a\) tức \(a\)\(b\) là hai số đối nhau

Vậy \(a\)\(b\) là hai số đối nhau (Đpcm)

b) Giải:

Ta có:

Từ \(a+b=c+d\Rightarrow d=a+b-c\)

\(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)

\(\Rightarrow ab-c\left(a+b-c\right)=1\)

\(\Rightarrow ab-ac-bc+c^2=1\)

\(\Rightarrow a\left(b-c\right)-c\left(b-c\right)=1\)

\(\Rightarrow\left(b-c\right)\left(a-c\right)=1\)

Suy ra \(a-c=b-c\) (vì cùng bằng \(1\) hoặc \(-1\))

Hay \(a=b\) (Đpcm)

2 tháng 2 2018

ab-ac+bc-c2

= a(b-c) +c(b-c)

=(a+c)(b-c)=-1

=>  a+c = -(b-c)

=> a+c = -b+c

=> a=-b => là 2 số đối nhau

31 tháng 10 2015

lớp 6?

ab-ac+bc-c2=-1

b(a+c)-c(a+c)=-1

(a+c)(b-c)=-1

a+c=1va b-c=-1nên a=1-c và b=c-1 ta có  a+b=1-c +c-1=0 nên a va  b là 2 số đối nhau.

hoặc a+c=-1 và b-c=1 => a=-1-c; b=c+1 nên a+b= -1-c+c+1=0 nên a va  b là 2 số đối nhau.

AH
Akai Haruma
Giáo viên
30 tháng 1 2020

Lời giải:

$ab-ac+bc-c^2=-1$

$\Leftrightarrow (ab-ac)+(bc-c^2)=-1$

$\Leftrightarrow a(b-c)+c(b-c)=-1$

$\Leftrightarrow (a+c)(b-c)=-1$

Do $a,b,c\in\mathbb{Z}$ nên $a+c,b-c\in\mathbb{Z}$

Do đó có 2 TH xảy ra.

TH1: $a+c=1; b-c=-1$

$\Rightarrow a+c+b-c=0$

$\Rightarrow a+b=0$ nên $a,b$ là 2 số đối nhau (đpcm)

TH2: $a+c=-1; b-c=1$: hoàn toàn tương tự.

Vậy........

6 tháng 4 2020

ab−ac+bc−c2=−1ab−ac+bc−c2=−1

⇔(ab−ac)+(bc−c2)=−1⇔(ab−ac)+(bc−c2)=−1

⇔a(b−c)+c(b−c)=−1⇔a(b−c)+c(b−c)=−1

⇔(a+c)(b−c)=−1⇔(a+c)(b−c)=−1

Do a,b,c∈Za,b,c∈Z nên a+c,b−c∈Za+c,b−c∈Z

Do đó có 2 TH xảy ra.

TH1: a+c=1;b−c=−1a+c=1;b−c=−1

⇒a+c+b−c=0⇒a+c+b−c=0

⇒a+b=0⇒a+b=0 nên a,ba,b là 2 số đối nhau (đpcm)

TH2: a+c=−1;b−c=1a+c=−1;b−c=1: hoàn toàn tương tự.

Vậy........

23 tháng 1 2018

\(ab-ac+bc-c^2=-1\)

\(\left(ab-ac\right)+\left(bc-c^2\right)=a\left(b-c\right)+c\left(b-c\right)\)

\(=\left(a+c\right)\left(b-c\right)=-1=-1.1=1.-1\)

Xét : 

Nếu a + c = -1 thì b - c = 1 

Có thể vì : Nếu a + c = - 1 tức < 0 thì a < 0 ; c > 0 hoạc a > 0 ; c < 0 

Nếu a < 0 thì c > 0 => b - c có thể là 1 

Nếu a > 0  thì c < 0 => b - (-c) = b + c > 0

Tương tự với TH : b-c = 1 

Từ đó ta có đpcm  

1 tháng 4 2016

mk nghĩ đề bài là a,b,c thuộc N

ab-ac+bc-c^2=1

->(ab-ac)+(bc-c^2)=1

->a(b-c)+c(b-c)=1

->(b-c)(a+c)=1

mà a,b,c là các số tự nhiên

mà 1=1×1

+,b-c=1 và a+c=1

->b=1+c và a=1-c=-(c+1)=-b

->a,b là 2 số đối nhau