Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7\)https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7
Ấn vào linh đấy ế
\(\frac{a}{b+c}< \frac{2a}{a+b+c}\)
\(\Leftrightarrow a\left(a+b+c\right)< 2a\left(b+c\right)\)
\(\Leftrightarrow a^2+ab+ac< 2ab+2ac\)
\(\Leftrightarrow a^2< ab+ac\)
\(\Leftrightarrow a^2< a\left(b+c\right)\)
\(\Leftrightarrow a< b+c\) (luôn đúng \(\forall\) a;b;c là 3 cạnh của \(\Delta\) )
Vậy \(\frac{a}{b+c}< \frac{2a}{a+b+c}\)
Ta có:
\(\frac{a}{b+c}=\frac{2a}{2\left(b+c\right)}\)
Vì \(a< b+c\)(Bất đẳng thức tam giác)
nên \(a+b+c< 2\left(b+c\right)\)
\(\Rightarrow\frac{2a}{2\left(b+c\right)}< \frac{2a}{a+b+c}\)
Hay\(\frac{a}{b+c}< \frac{2a}{a+b+c}\)
Nhận xét : \(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{a+c}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
Cộng từng vế => \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)
+) Lại có: a;b; c là 3 cạnh của tam giác nên a < b+ c; b < a+ c; c< a+ b
=> \(\frac{a}{b+c}<1;\frac{b}{c+a}<1;\frac{c}{b+a}<1\)
\(\frac{a}{b+c}<1\Rightarrow\frac{a}{b+c}<\frac{a+a}{b+c+a}=\frac{2a}{a+b+c}\)
tương tự, \(\frac{b}{c+a}<\frac{2b}{a+b+c};\frac{c}{a+b}<\frac{2c}{a+b+c}\)
=> \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\) (2)
Từ (1)(2) => đpcm
Cô si thôi:
\(0\le\left(b+c-a\right)\left(c+a-b\right)\le\frac{\left(b+c-a\right)+\left(c+a-b\right)}{2}=c\)
\(0\le\left(c+a-b\right)\left(a+b-c\right)\le\frac{\left(c+a-b\right)+\left(a+b-c\right)}{2}=a\)
\(0\le\left(b+c-a\right)\left(a+b-c\right)\le\frac{\left(b+c-a\right)+\left(a+b-c\right)}{2}=b\)
\(\Rightarrow0\le\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)
(Dấu "=" khi và chỉ khi a = b = c hay tam giác ABC đều)