K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2020

Bạn xem lại đề nhé!

Mình chứng minh lỗi sai của bạn:

a, b, c là 3 cạnh của 1 tam giác vuông với c là cạnh huyền 

=> \(a^2+b^2=c^2\Leftrightarrow\left(\frac{a}{c}\right)^2+\left(\frac{b}{c}\right)^2=1\)

Mà \(a< c;b< c\Rightarrow\frac{a}{c}< 1;\frac{b}{c}< 1\)

=> \(\left(\frac{a}{c}\right)^{2020}< \left(\frac{a}{c}\right)^2;\left(\frac{b}{c}\right)^{2020}< \left(\frac{b}{c}\right)^2\)

=> \(\left(\frac{a}{c}\right)^{2020}+\left(\frac{b}{c}\right)^{2020}< \left(\frac{a}{c}\right)^2+\left(\frac{b}{c}\right)^2=1\)

=> \(a^{2020}+b^{2020}< c^{2020}\)

Bạn vẫn nên xem lại đề nha!

8 tháng 8 2023

bạn Tham khảo bài bạn này 

12 tháng 6 2015

: Nhầm đề bài rồi a^2 + b^2 + c^ 2 > 2(ab+bc+ac)

12 tháng 6 2015

\(ab+bc=b\left(a+c\right)>b.b=b^2\)

\(bc+ca=c\left(a+b\right)>c.c=c^2\)

\(ca+ab=a\left(b+c\right)>a.a=a^2\)

\(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

21 tháng 4 2017

Một tuần nữa mới thi á? Đâu thi rồi. Có muốn biết đề ko?

4 tháng 3 2019

+) Giả sử 0<a≤c0<a≤c ta có: a2≤c2a2≤c2

a2+b2>5c2a2+b2>5c2

⇒a2+b2>5a2⇒a2+b2>5a2

⇒b2>4a2⇒b2>4a2

⇒b>2a⇒b>2a (1)

c2>a2⇒b2+c2>a2+b2>5c2c2>a2⇒b2+c2>a2+b2>5c2

⇒b2>4c2⇒b2>4c2

⇒b>2c⇒b>2c (2)

Cộng (1), (2) ⇒2b>2a+2c⇒2b>2a+2c

⇒b>a+c⇒b>a+c ( vô lí )

⇒c<a⇒c<a

+) Chứng minh tương tự suy ra c < b

{c<ac<b⇒{Cˆ<AˆCˆ<Bˆ⇒2Cˆ<Aˆ+Bˆ{c<ac<b⇒{C^<A^C^<B^⇒2C^<A^+B^

⇒3Cˆ<Aˆ+Bˆ+Cˆ⇒3C^<A^+B^+C^

⇒3Cˆ<180o⇒3C^<180o

⇒Cˆ<60o(đpcm)⇒C^<60o(đpcm)

Vậy...

4 tháng 3 2019

Xin lỗi các bạn dấu mũ bị lộn nhé!