\(\frac{a}{b}+\frac{c}{b}+\frac{a}{c}\ge\frac{b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2020

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

27 tháng 5 2019

1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0

theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :

2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )

\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

27 tháng 5 2019

Ta có a + b > c, b + c > a, a + c > b

Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

vậy ...

18 tháng 11 2017

Đặt a+b-c=x

       b+c-a=y

      c+a-b=z

\(A=\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ca}{c+a-b}\)

Ta có a;b;c là độ dài 3 cạnh tam giác nên x;y;z>0

\(4A=\frac{2a.2b}{x}+\frac{2b.2c}{y}+\frac{2c.2a}{z}\)

\(=\frac{\left(x+z\right)\left(x+y\right)}{x}+\frac{\left(x+y\right)\left(y+z\right)}{y}+\frac{\left(x+z\right)\left(y+z\right)}{z}\)

\(=3\left(x+y+z\right)+\left(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}\right)\)

\(\ge3\left(x+y+z\right)+\frac{\left(x+y+z\right)xyz}{xyz}\)\(=4\left(x+y+z\right)=4\left(a+b+c\right)\)  (Do x;y;z>0)

\(\Rightarrow A\ge a+b+c\)

19 tháng 8 2017

Theo nguyện vọng đặt ẩn phụ :

Đặt b+c-a=x ; c+a-b=y ; a+b-c=z

\(\Rightarrow a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)

\(\Rightarrow\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}=\frac{\left(y+z\right)^2}{4x}+\frac{\left(x+z\right)^2}{4y}+\frac{\left(x+y\right)^2}{4z}\)

Áp dụng BĐT Schwarz:

\(\frac{\left(y+z\right)^2}{4x}+\frac{\left(x+z\right)^2}{4y}+\frac{\left(x+y\right)^2}{4z}\ge\frac{\left(2\left(x+y+z\right)\right)^2}{4\left(x+y+z\right)}=x+y+z=a+b+c\)

Dấu''='' tự giải ra nhá.

P/s Bài này đặt ẩn phụ rất dài dòng, bn chỉ cần Schwarz thẳng là ra luôn

21 tháng 6 2020

Không cần đặt ẩn phụ, ta có thể làm cách sau:

Xét \(\frac{a^2}{b+c-a}+\left(b+c-a\right)\ge2\sqrt{\frac{a^2}{b+c-a}.\left(b+c-a\right)}=2a\)

Tương tự ta chứng minh được: \(\frac{b^2}{c+a-b}+\left(c+a-b\right)\ge2b\)và \(\frac{c^2}{a+b-c}+\left(a+b-c\right)\ge2c\)

\(\Rightarrow VT+2\left(a+b+c\right)-\left(a+b+c\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow VT\ge a+b+c\)

Dấu "=" xảy ra khi: \(a=b=c\)

4 tháng 9 2020

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức :

\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+c+a-b+a+b-c}\)

\(\Leftrightarrow\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge a+b+c\left(đpcm\right)\)

Bất đẳng thức được chứng minh 

4 tháng 9 2020

Áp dụng BĐT Bunhiacopxki dạng cộng mẫu:

\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+c+a-b+a+b-c}\)

\(=\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra khi: \(a=b=c\)

28 tháng 7 2020

Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)

⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2

⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự

⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y

⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0

(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)

dấu = ⇔x=y=z⇔a=b=c

Mai Anh ! cậu giỏi quá, cậu nè :33 

16 tháng 2 2019

1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)

\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được 

\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c

16 tháng 2 2019

2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0 

Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)

\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được 

\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)

\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)

\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)

Cộng 3 bđt trên lại ta được đpcm