K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

ta có 4a2b2c2=(2bc)2

=(2bc)2-(b2+c2-a2)

dùng hằng đăng thức thứ 3 + hằng đẳng thức thứ 1 ta được

=[-(b-c)2+a2].[(b+c)2-a2]

<=>[a2-(b-c)2].[(b+c)2-a2]

=(a+c-b).(a+b-c).(b+c-a).(b+c+a)

dùng bất đẳng thức tam giác bạn tự kết luận nha

27 tháng 9 2017

Bài này chỉ chứng minh được khi 2 tam giác vuông với 2 cạnh là a và b

Ta có :

\(c^2+b^2=c^2\)

\(\Rightarrow\)\(a^2+b^2-c^2=0\)          ( 1 )

Thay 1 vào :

\(4a^2b^2-0\)

\(=4a^2b^2\)

\(\Rightarrow\)

1 tháng 10 2017

Ta có: A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2  + 2a2b2 - 2b2c2 - 2a2c2 + 4a2b2 =  (a2 + b2 - c2)2 - 4a2b2

= (a2 + b2 - c2 - 2ab).(a2 + b2  - c+ 2ab)  (1)

Vì a; b;c là 3 cạnh của tam giác nên c > |a - b| => c> (|a - b|)2 = (a - b)2

=> c2 > a2 + b2 - 2ab => a2 + b - c2 - 2ab  < 0  (2)

lại có : a+ b > c => (a+ b) 2 > c=> a2 + b2  - c+ 2ab > 0  (3)

Từ (1)(2)(3) => A < 0 => đpcm

1 tháng 10 2017

luôn luôn dương mà

14 tháng 4 2017

dùng BĐT tam giác là ra

DD
18 tháng 6 2021

\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

\(=\left[c^2-\left(a-b\right)^2\right]\left[c^2+\left(a+b\right)^2\right]\)

\(=\left(c-a+b\right)\left(c-b+a\right)\left[c^2+\left(a+b\right)^2\right]>0\)

(vì theo bất đẳng thức tam giác thì \(b+c-a>0,a+c-b>0\))

1 tháng 6 2018

A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)

A=(c^2-(a-b)^2).((a+b)^2-c^2)

A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)

Do c+b-a>0

c+a-b>0

a+b-c>0

a+b+c>0

=>A>0

30 tháng 8 2019

olm mootj trang web mat day nhat hanh tinh dot nhien tru 20 diem ma khong lien quan j khong tra loi cau hoi linh tinh ma cung tru diem mat day : bo lao

liên quan j đến tôi

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho!!