\(a^2+b^2+c^2=1\). Chứng minh rằng: 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

Vì $1=a^2+b^2+c^2$ nên:

\(\frac{1}{a^2+b^2}+\frac{1}{b^2+c^2}+\frac{1}{c^2+a^2}=\frac{a^2+b^2+c^2}{a^2+b^2}+\frac{a^2+b^2+c^2}{b^2+c^2}+\frac{a^2+b^2+c^2}{c^2+a^2}\)

\(=3+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\)

\(\leq 3+\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}\) (theo BĐT AM-GM)

\(=3+\frac{a^3+b^3+c^3}{2abc}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{\frac{1}{3}}\)

25 tháng 3 2017

2a)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2a+b+c}=\dfrac{1}{a+b+a+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{1}{a+2b+c}=\dfrac{1}{a+b+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{1}{a+b+2c}=\dfrac{1}{a+c+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{1}{4}\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)+\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)

\(\Rightarrow VT\le\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)

Chứng minh rằng \(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\\\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )

\(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)

\(\Rightarrow\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

2b)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}1+a^2\ge2\sqrt{a^2}=2a\\1+b^2\ge2\sqrt{b^2}=2b\\1+c^2\ge2\sqrt{c^2}=2c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{1+a^2}\le\dfrac{a}{2a}=\dfrac{1}{2}\\\dfrac{b}{1+b^2}\le\dfrac{b}{2b}=\dfrac{1}{2}\\\dfrac{c}{1+c^2}\le\dfrac{c}{2c}=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=1\)

24 tháng 3 2017

Bài 1)

Nháp : nhìn nhanh ta thấy nên áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Giải

Vì x,y > 0 =) 2x + y > 0 , x + 2y > 0

Áp dụng BĐT cauchy dạng phân thức cho hai bộ số không âm \(\dfrac{1}{2x+y}\)\(\dfrac{1}{x+2y}\)

\(\Rightarrow\dfrac{1}{x+2y}+\dfrac{1}{2x+y}\ge\dfrac{4}{x+2y+2x+y}=\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3\left(x+y\right)}=4\)

Dấu '' = "xảy ra khi và chỉ khi x + 2y = y + 2x (=) x=y

AH
Akai Haruma
Giáo viên
9 tháng 7 2020

Lời giải:

Phản chứng. Giả sử tồn tại 3 số dương $a,b,c$ thỏa mãn điều trên

$\Rightarrow a+\frac{1}{b}+b+\frac{1}{c}+c+\frac{1}{a}< 6$

$\Leftrightarrow (a+\frac{1}{a}-2)+(b+\frac{1}{b}-2)+(c+\frac{1}{c}-2)< 0$

$\Leftrightarrow \frac{(a-1)^2}{a}+\frac{(b-1)^2}{b}+\frac{(c-1)^2}{c}< 0$ (vô lý với mọi $a,b,c>0$)

Do đó điều giả sử là sai.

Tức là không có 3 số dương $a,b,c$ nào thỏa mãn BĐT đã cho.

21 tháng 3 2017

Bài 1:a,b,c ba cạnh tam giác => a,b,c dương

\(\left\{{}\begin{matrix}a+c>b\\a+b>c\\b+c>a\end{matrix}\right.\) ta có: \(\dfrac{x}{y}< \dfrac{x+p}{y+p}\forall_{x,y,p>0\&x< y}\)

\(VT=\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+c}{a+b}+\dfrac{b}{c+a}< \dfrac{a+c+c}{a+b+c}+\dfrac{b+b}{a+b+c}=\)

\(=\dfrac{a+b+c+b+c}{a+b+c}< \dfrac{\left(a+b+c\right)+\left(A+b+c\right)}{a+b+c}< \dfrac{2\left(b+a+c\right)}{a+b+c}=2=VP\)

p/s: đề sao làm vậy:

mình nghi đề phải thế này: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) cách làm đơn giản hơn

22 tháng 3 2017

hướng dẫn bài 2,3 giúp mình với

25 tháng 8 2017

Với mọi a , b , c \(\in\)R ta luôn có :

\(a^2\)+   \(b^2\)+   \(c^2\)> hoặc = \(2bc+2ca-2ab\left(1\right)\)

Ta cần chứng minh ( 1 ) là bất đẳng thức đúng

\(\Leftrightarrow\)\(a^2\)+   \(b^2\)+   \(c^2\)+ 2ab - 2bc - 2ca > hoặc = 0

\(\Leftrightarrow\)\(\left(a+b-c\right)^2\) > hoặc = 0 ( 2 )

Bất đẳng thức ( 2 ) luôn đúng với mọi a ; b ; c mà các phép biến đổi trên tương ứng

Nên bất đẳng thức ( 1 ) được chứng minh

Xảy ra khi và chỉ khi a + b = c

Mà   \(a^2\)+   \(b^2\)+   \(c^2\)=   \(\frac{5}{3}\)( gt )

Mà   \(\frac{5}{3}\)=   \(1\frac{2}{3}\)< 2  ( 3 )

Từ ( 1 ) kết hợp với ( 3 ) ta có thể viết :

2bc + 2ca - 2ab < hoặc =    \(a^2\)+   \(b^2\)+   \(c^2\)< 2

\(\Rightarrow\)2bc + 2ca - 2ab < 2

Vì a ; b ; c > 0 nên chia cả 2 vế của bđt cho 2abc

\(\frac{2bc+2ca-2ab}{2abc}< \frac{2}{2abc}\)

\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

Vậy với a ; b ; c là các số dương thỏa mãn điều kiện :   \(a^2\)+   \(b^2\)+   \(c^2\)=   \(\frac{5}{3}\)thì ta luôn chứng minh được :

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

25 tháng 8 2017

đm làm mỏi tay :v thấy đúng thì ..................